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Preface

In the entire nuclear landscape, only about 300 stable nuclei exist on the stability line,

and the rest other undergo radioactive decay through various modes including alpha

decay, beta decay, gamma decay, double beta decay, and so on. In this thesis, we have

theoretically investigated the nuclear reaction dynamics of light and medium mass nuclei

and decay modes using the Relativistic mean field model. For decay modes, we have

studied cluster decay half-lives and two proton decay of several potential radioactive

nuclides, which lie on either side of the beta stability line of the nuclear landscape. These

studies are quite significant to understand the basic building blocks of nuclear structure.

In Chapter-1 of the thesis, we have presented an introduction of the subject with a

brief literature review. Subsequently, we have presented the motivation to take up the

present work.

In Chapter-2, a brief description of the nuclear models employed in the thesis work

for the calculation of ground-state properties has been presented. We have used the Rel-

ativistic Hartree Bogoliubov model with density-dependent meson exchange (DD-ME2),

density-dependent point coupling (DD-PC1) parameter sets, and a non-linear NL3* pa-

rameter set, in the Relativistic Mean-field (RMF) model. The details of the Glauber

model and its description for calculating nuclear reaction cross-section along with the

process of using the nuclear densities from this RMF formalism have also been described.

A detailed description of the effective liquid drop (ELDM) model, as well as other empiri-

cal formulas such as Universal Decay Law (UDL), Tavares-Medeiros (TM), Viola-Seaborg

(VS), and Horoi formula, has been given for the sake of completeness in the discussion.

In Chapter-3, we have presented a systematic study of the nuclear reactions of various

light and medium mass nuclei (He, Li, Be, B, C, Ca, Ni, Zr, and Sn isotopes) on 12C

and proton targets mainly at high energies using Glauber model and a comparison of the

results with available experimental data is made. The microscopic nuclear densities needed

for these calculations have been obtained using relativistic Hartree-Bogoliubov formalism.

xxv
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In addition, other ground-state bulk properties are also calculated and compared with

the available experimental data. It has been observed that the results obtained using the

relativistic framework with the density-dependent meson exchange (DD-ME2) parameter

set are in better agreement with the experimental data than with the density-dependent

point coupling (DD-PC1) results. Also, it is observed that the total reaction cross-section

increases with the increase of the projectile mass and compares well with the experimental

data.

In Chapter-4, we have presented our results for the half-lives of alpha-like clusters (8Be,
12C, 16O, 20Ne, and 24Mg) decay in the trans-tin region for (106−116Xe, 108−120Ba, 114−126Ce,

and 118−128Nd) and in transition metal region (156−166Hf, 158−172W, 160−174Os, 166−180Pt,

and 170−182Hg). These half-lives have been calculated using the shape parametrization

model of cluster decay in conjunction with the axially deformed relativistic mean-field

(RMF) model with the NL3* parameter set. These results have also been compared with

the half-lives computed using the latest empirical relations, namely Universal Decay Law

(UDL) and the Scaling Law was given by Horoi et al.. It has been observed that in the

trans-tin region the minimum cluster decay half-lives are found at nearly doubly magic or

doubly magic daughter 100Sn nucleus (Nd = 50, Nd is the neutron number of the daughter

nucleus) and in transition metal region at Nd = 82, which is a magic number.

In Chapter-5, we have presented the structural properties, alpha and clusters decay

half-lives (for 8Be, 12C, 16O, 20Ne, and 24Mg decay) in the Th, U, and Pu isotopes using

the well-known Relativistic Mean-Field (RMF) theory with NL3* parameter set. We have

calculated the binding energy per nucleon, RMS radii, two-neutron separation energies

(S2n), and other ground-state observables to test the reliability of our calculations. The

results are in good agreement with the finite-range droplet model (FRDM) and experi-

mental data available. The half-live calculations are also carried out by using the latest

empirical relations, namely Universal Decay Law (UDL), Tavares- Medeiros (TM), Viola-

Seaborg (VS), and the Scaling Law given by Horoi et al., and their comparisons with

the effective liquid drop model (ELDM) results are found to be in good agreement. In

the plots for log10T1/2 versus the neutron number of the daughter in the corresponding

decay, the half-life is found to be the minimum for the decay leading to nearly doubly

magic or doubly magic daughter 208Pb nucleus (Nd = 126, Nd is the neutron number of

the daughter nucleus).

In Chapter-6, we have presented our study for two proton emitters and results for

ground-state properties, i.e., the binding energy per nucleon and two-proton separation
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energy of Fe, Ni, Zn, Ge, Kr and Zr isotopes by using the relativistic mean-field (RMF)

approach with force parameter NL3* results are in excellent agreement with the avail-

able experimental data. We have performed systematic studies of the two-proton (2p)

radioactivity, the two-proton decay energy (Q2p) using the RMF (NL3*) approach, the

finite-range droplet model (FRDM), and the Weizsacker-Skyrme-4 (WS4). Then, the ef-

fective liquid drop model (ELDM) is applied to find out the two-proton decay half-lives

using three kinds of evaluated Q2p values. The two-proton decay half-lives calculations

are also carried out by using empirical formulas, namely Liu and Sreeja, and their com-

parisons with ELDM results are found to be in agreement. Also, we predict the half-lives

of possible nuclei of the two-proton radioactivity in the range 30 ≤ Z ≤ 40 with released

energy Q2p > 0, for the planned/upcoming experiments.

In Chapter-7, the summary and conclusion of the thesis work along with the future

scope of the present study have been presented.





Chapter 1

Introduction

Before the understanding of the nucleus and nuclear interaction, the structure of the

atom itself has been a mystery of nature. It started with Thomson’s plum pudding model,

which described the atom as a positive charge sphere with electrons embedded into it to

balance the total positive charge. The negative charge of the electron was postulated to

be similar to “plums” in a “pudding”. Ernest Rutherford further described the atomic

nucleus in 1911 [1] after performing his famous gold foil experiment, i.e. a gold foil was

bombarded with α particles. Based on the experimental results, Rutherford proposed

that a major part of the mass of an atom and all of its positive charge were concentrated

in a small central core, called the nucleus. The internal composition of an atomic nucleus

came to be known in 1932 after the discovery of a neutron by Chadwick [2]. In an atom,

the nucleus consists of protons and neutrons. In an atomic nucleus, protons (positively

charged particles) and neutrons (neutral particles) are held together by a strong nuclear

force. Yukawa later proposed the meson theory of nuclear force in 1935 [3]. According to

this theory, nucleons interact with each other via the exchange of mesons.

A large number of theoretical and experimental studies have been performed since then to

understand nuclear interaction and predict the endpoints of the neutron-rich and proton-

rich sides of the nuclear landscape. The nuclear landscape is basically the periodic table

of nuclear physics. It is the arrangement of all possible nuclei according to their unique

combinations of protons and neutrons. In figure 1.1, the neutron number (N) is plotted

on the x-axis, and the y-axis represents the proton number (Z). Only a few nuclei (ap-

proximately 300) occur naturally on Earth, which are represented by block square dots

in figure 1.1. The black squares represent stable nuclei that define the value of stability.

1
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Figure 1.1: Nuclear landscape of stable, experimentally synthesized, and theoretically

predicted nuclei.

These nuclei have an almost infinitely long life-time and are known as stable nuclei. The

stable nuclei lie on the β-stability line and the unstable nuclei lie above and below the

line of stability in the nuclear landscape. In a stable atom, there is enough binding en-

ergy to permanently hold the nucleus together. However, in unstable nuclei, the strong

nuclear force does not generate enough binding energy to maintain the nucleus together

permanently.

To study the entire system in the N-Z plane, we require knowledge of nuclear interaction

and nuclei on the stability line and away from the stability line. Currently, different the-

oretical models suggest more than 6000 bound nuclei exist in the nuclear chart. However,

approximately 2000 nuclei have been observed experimentally. With the existence of the

other isotopes, which are far from the β-stability line, many experimental and theoret-

ical research groups are working on this aspect. After 1980, the construction of a new

generation of radioactive beam facilities in several laboratories around the whole world

developed a new approach to studying isotopes in both the proton and neutron drip-line

regions. Many theoretical studies [4, 5, 6, 7, 8, 9, 10, 11] and experimental efforts at

various laboratories in RIKEN-Japan [12], JINR-Dubna [13, 14], and GANIL-France [15]

have led to important results in the concerned field of research.
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There are a very small number of nuclei that show proton-rich characteristics, as shown

in figure 1.1 above the β-stability line (shown with pink color). Burbidge et al. [16],

and A.G.W. Cameron [17] showed that the majority of the naturally occurring nuclides

beyond the element iron can be made in two different kinds of neutron-capture pro-

cesses, the slow neutron capture process (s-process) and rapid neutron-capture process

(r-process). Generally, the formation of proton-rich nuclei occurs by gradually adding

protons to the nuclei (p, γ) or by removing neutrons from nuclei (γ, n). The proton-rich

region is bounded by the proton drip line, represented by a dashed red. Neutron-rich

nuclei are produced through the r-process or s-process. The r-process is responsible for

the formation of approximately half of the atomic nuclei above the iron element. The

slow neutron capture process (s-process) occurs with the emission of gamma radiation

(n, γ) which takes place at relatively low temperature (T∼1-3×108K) and relatively low

neutron densities (106 cm−3). Below the β-stability line, the region is neutron-rich (shown

in blue) and is limited by the neutron drip line, indicated by a dashed blue line. The

neutron drip line is reached when the binding energy for the last neutron, Bn, becomes

zero. Similarly, at the drip lines, the binding energy of the last proton, Bp, is zero. The

proton drip line is reached quite fast because Coulomb repulsion is a hindrance to the

formation of proton-rich nuclei. The nucleus after which no more protons or neutrons can

be added is known as the drip line nucleus. These nuclei have very short half-lives and

extremely low separation energies for one or two protons.

Some nuclei exhibit very high stability with their proton number Z or neutron number

N corresponding to certain values known as magic numbers. These magic numbers are

Z=2, 8, 20, 28, 50, 82, and neutron numbers N = 2, 8, 20, 28, 50, 82, and 126. At these

magic numbers, a shell closure occurs. These nuclei assume spherical shapes and very

stable nuclear configurations. In figure 1.1, the magic numbers are indicated by hori-

zontal and vertical bars. Doubly magic nuclei have higher stability, with a closed shell

of both protons and neutrons. Elements greater than Uranium (Z=92) are not usually

found in nature and are considered as a super-heavy region. These elements can be syn-

thesized in laboratories, but they have very short half-lives, meaning they decay rapidly.

In super-heavy nuclei, a large number of protons are present, and repel each other due to

their positive charges. This repulsion makes these nuclei more radioactive and less stable.

Super-heavy nuclei are located in the faraway corner of figure 1.1.

In this thesis, we have studied the nuclear reaction dynamics of various nuclei using the

relativistic mean-field model, along with some other exotic phenomenon. In the following
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section, we have given a brief introduction to these topics.

1.1 Nuclear Reaction

This approach to determining the structure of the nucleus is through a nuclear reaction.

A nuclear reaction is a process in which the nucleons in the incident particle (projectile)

interact with the nucleons of the target nucleus, where energy plays a crucial role. A

large amount of energy is required to overcome the electromagnetic repulsion between the

protons, known as the Coulomb barrier. If the energy is below this Coulomb barrier, the

nuclei will bounce off each other. When an interaction occurs between the projectile and

target nucleus, there are two possibilities: either the beam particle scatters elastically,

leaving the target nucleus in its ground state or the target nucleus becomes internally

excited and subsequently decays by emitting nucleons. A nuclear reaction is characterized

by identifying the incident particle, target nucleus, and reaction products. The incoming

particle can produce different types of reactions depending on its energy. In 1919, the first

nuclear reaction was observed by Rutherford using alpha particles detected at nitrogen
14N+α → 17O+p. A nuclear reaction can release protons, electrons, as well as gamma

rays.

Common notation of nuclear reaction: a + A = b + B

where a is the projectile, A is the target, and b and B are the reaction products.

Table 1.1: Types of Nuclear Reactions and Observation about Nuclei and Nuclear Energy.

Reaction Observation

Nucleon-Nucleon Scattering Fundamental Nuclear Force

Elastic Scattering Nuclear Size and Interaction Potential

Inelastic Scattering Energy Level Location and Quantum Numbers

Transfer and Knockout Reactions Details of the Shell Model

Fusion Reactions Astrophysical Processes

Fission Reactions Properties of Liquid-drop Model

Compound Nucleus Formation Statistical Properties of the Nucleus

Multifragmentation Phases of Nuclear Matter, Collective Model

Pion Reactions Investigation of the nuclear Glue

Electron Scattering Quark Structure of Nuclei

Distinct reactions were studied by measuring the kinetic energies and incident angles
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of the reaction products. The reaction cross section is one of the most important quan-

tities of interest for a specific set of kinematics variables. The cross-section describes

the probability of a projectile hitting a target nucleus. Different types of cross-sections

are total reaction cross-section (σr), differential scattering cross-section ( dσ
dΩ

), nuclear re-

moval cross-section (σ1N), etc. σr is one of the very fundamental quantities characterizing

nuclear reaction. It has been calculated both theoretically and experimentally. Cross-

sections depend on a variety of reaction variables. Theoretically, there are two different

types of formalism for investigating the reaction cross-section. The first one is known as

the low energy Bass model [18], which is based on an interaction potential. The interaction

radius is determined by fitting the experimental data in this model. However, the second

kind of theoretical approach is based on the high-energy microscopic Glauber model [19]

which considers the individual nucleon-nucleon interaction. The reaction cross-section

provides information about the probability of a specific reaction occurring, allowing us

to understand the size and distribution of the nuclei. The estimation of reaction cross-

section is very important for an overall understanding of the reaction mechanism and

associated dynamical behavior. On the basis of projectile energy range, the nuclear re-

action is classified as Low-energy reactions (Elab ≤30MeV/nucleon), Intermediate energy

reactions (Elab=30-1000MeV/nucleon), and High-energy reactions (Elab >1GeV/nucleon).

In the low-energy range, where the nuclear system has incident energy E≤30 MeV/nucleon.

At this energy the strong absorption effect dominates, and a microscopic description of

the process is so difficult to observe. The nuclear reaction requires an energetic projectile

beam coming from an accelerator to be incident on the target. Depending on the condi-

tions of the nuclear reaction, different kinds of reactions can occur.

When a projectile strikes the target nucleus it forms an intermediate nucleus called the

compound nucleus. The compound nucleus is unstable and decays life-time of the order of

10−17-10−15 sec. The compound nucleus disintegrated by emitting a particle-like a proton,

neutron, α-particle, and γ-particle, etc. to form a product nucleus.

In a non-compound nuclear reaction, the life-time of the interaction is very small, on the

order of 10−22 sec, compared to the life-time of the formation of a compound nucleus.

In addition to compound nucleus processes, there are other non-compound nucleus decay

processes, such as direct reaction, Quasi-fission (QF), Deep-inelastic collisions (DIC), and

pre-equilibrium fission [20], etc.

The nuclear reaction in which the projectile does not combine with the target nucleus

as a whole and interacts only with the surface is called a direct nuclear reaction. This

reaction is completed without the formation of a compound nucleus, and the reaction
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occurs on the surface of nucleons. The projectile may lose one or more nucleons in direct

reactions. The incident particle and the target nucleus have a life-time of the order of

10−22 sec and interaction potential depth in MeV. Several processes like inelastic or elastic

nuclear reactions, stripping or pick-up reactions give direct reactions. A brief overview of

stripping and pick-up reactions is given below.

A stripping reaction is a process in which some part of the incident projectile nucleus

interacts with the target nucleus, while the remaining portion continues with an almost

similar momentum in the original direction. This reaction was first described by Stuart

Thomas Butler [21] in 1950. Stripping reactions of various types, e.g., (d, p), (d, n), (t,

p), (t, d) and (α, p), are known to occur at large particle energies with numerous different

nuclei. Deuteron stripping reactions have been used to study nuclear reactions and the

structure of Cu63(d, p)Cu64.

A pickup reaction is a reaction in which one or more nucleons are transferred from the

target nucleus to the projectile nuclei without changing the structure of the remaining

nucleons. Reactions of this type include (p, α), (p, t), (p, 3He), (d, t) and (d, 3He). An

example of the pick-up reaction is O16(p, d)O15.

In the intermediate energy range of the nuclear system, nucleus-nucleus interaction are

dominated by free nucleus-nucleus collision, which suggests that the surface transparency

effect increases with the increase of the energy over this region. When the energy of the

projectile exceeds 30 MeV/nucleon, the system is considered to be in an extremely ex-

cited state. As the projectile energy increases further, reaching up to 200 MeV/nucleon,

the multi-fragmentation process starts taking place during a collision, which makes the

nuclear system in a boiling state. In the energy of an incident projectile is within the

range of 100 MeV/nucleon to a few GeV/nucleon, the system is in a highly excited state

and emits various particles through a multi-fragmentation phenomenon.

1.1.1 Nuclear Scattering

Nuclear scattering and nuclear reactions are utilized to estimate the properties of nuclei.

When two particles, the projectile and the target, collide without exchanging masses

or changing their nature, the interaction is referred to as nuclear scattering. This type

of interaction is considered a fundamental nuclear reaction. During nuclear scattering,

the projectile and target do not exchange any particles with each other, ensuring that

momentum and energy remain unchanged. Nuclear scattering can be classified as elastic

or inelastic scattering.
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Elastic scattering occurs when the linear momentum and total kinetic energy of the system

are conserved throughout the collision, the nucleus to return to its ground state. The

study of elastic scattering on both stable and exotic nuclei provides valuable information

on nuclear potentials and nuclear matter densities. Matter of interest, the p-p scattering

on both stable and neutron-rich nuclei at high energies was successfully investigated by

G. D. Alkhazov et al. [22]

Inelastic scattering is a fundamental scattering process in which the linear momentum

of the system is conserved after the collision, but the kinetic energy of the system does

not remain conserved. The probability of the scattering depends on the energy of the

incident particle. In inelastic scattering, some of the energy of the incident particle is lost

or increased. During inelastic scattering, the incident particle interacts with the target

nucleus, leading to the formation of a compound nucleus. The compound nucleus then

emits a particle of lower kinetic energy, causing the original nucleus to be left in an excited

state. The nucleus will emit this excess energy in the form of γ-emissions to reach its

ground state.

The theoretical and experimental study of cluster radioactivity has been discussed in

detail, in the section below.

1.2 Cluster Radioactivity

The studies of radioactive decay have contributed immensely to the understanding of nu-

clear structure. In 1896, Henri Becquerel discovered radioactivity, and later, Curie’s in

1898 were confirmed the discovery. Radioactivity, or nuclear decay, refers to the process

by which an unstable atomic nucleus losses energy by emitting radiation. The first ob-

servation of the atomic nucleus was obtained by studying radioactivity at the beginning

of the twentieth century. Early experiments on radioactivity revealed the existence of

three modes of radioactive decay: alpha-decay, beta-decay, and gamma-decay. In 1940

[23], another type of radioactive decay was discovered, where unstable nuclei of heavier

elements spontaneously split into two nearly equal nuclei, known as spontaneous fission.

Furthermore, in 1980, Sandulescu, Poenaru, and Greiner [24, 25] theoretically proposed

yet another type of radioactive decay called cluster radioactivity. The phenomenon of

Cluster radioactivity (CR) is the spontaneous emission of fragments heavier than alpha

particles and lighter than the lightest fission fragments. In this decay process, a parent

nucleus (A, Z) (with A as the mass number and Z as the atomic number) breaks into two

segments: the associated daughter (A1, Z1 ) and the emitted cluster (A2, Z2 ) (where A
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= A1+A2; Z=Z1 +Z2; with Ai, Zi (i=1,2) as the mass number and the atomic number of

the daughter nuclei and emitted cluster, respectively). The term cluster radioactivity was

wrought in the same way that proton decay from nuclei was defined as proton radioactiv-

ity, alpha particle decay from nuclei was defined as alpha radioactivity. In the same way,

cluster decay from nuclei has been defined as cluster radioactivity.

In figure 1.2, a chart of cluster emitters has been given by associating to each emitter

Figure 1.2: Chart of cluster emitters with half-lives up to 10100s [26].

only the most probable emitted cluster. Three islands for cluster radioactivity have been

identified: one above 100Sn (N = 50), another above N = 82, and the main island with

daughter nuclei in the vicinity of 208Pb (N = 126). These islands are determined by se-

lecting measurable half-lives shorter than 1032s and branching ratios relative to α-decay

b ≥ 10−17.

1.2.1 A brief overview of earlier theoretical studies of cluster

radioactivity

Poenaru et al [27] have predicted that all stable nuclei lighter than lead with atomic

number (Z)>40 were in a meta stable state relative to spontaneous cluster decay, using

an analytical super asymmetric fission model. These authors reported half-lives in the

range of 1040-1050s for nuclei Z>62. Poenaru et al concluded that parent nuclei with

Z>60 were expected to decay via clusters such as 12C, 16O, 30,32Si, 48,50Ca, and 68Ni, with

half-lives T1/2 > 1040s, resulting in the formation of daughter nuclei with Z=50-58 and
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N=78-82.

Poenaru et al. [28] have calculated partial half-lives for the most probable cluster

decay modes from nuclei with Z=52-122, using the analytical super asymmetric fission

model (ASAFM) while considering the odd-even effect. The authors specifically selected

nuclei for which the partial lifetime for cluster emission is T1/2 < 1030s and the branching

ratio relative to alpha decay b > 10−18.

Poenaru, Greiner, and Gherghescu [29] have predicted a new region of proton-rich

parent nuclei emitting by spontaneous cluster emission by using the ASAFM model. They

calculated the half-lives and branching ratios for the decay of 12C, 16O, and 28Si, as well

as a few other cluster decays from nuclei with proton numbers in the range Z=56-64 and

neutron numbers N=58-72. Their finding led them to conclude that cluster decay from

isotopes of these proton-rich parent nuclei results in the formation of the doubly magic

daughter nucleus, 100Sn.

Gupta et al. [30] have calculated the possible exotic cluster decay modes of some

stable nuclei in the region 50< Z <82, utilizing a preformed cluster model (PCM). They

have shown that some deformed nuclei in the neighborhood of spherical magic shell at

Z=50 and 82 and the deformed stable shell at N=108 are very unstable against various

heavy cluster decay modes. The authors reported predicted half-life results for the decays

of 120
56 Ba via 12C and 16O, and the decay of 186

80 Hg via 8Be, to be T1/2 ∼ 1022, 1026 and 1028

s, respectively.

In 1994, Satish et al. [31] have calculated cluster emissions of 112−120Ba nuclei using

the PCM model. The 4He, and 12C emission from 112Ba was found to be the most probable

decay and with a half-life time T1/2 ∼ 104 s. They predicted the lowest half-life value

for the decay of 112Ba via 12C, highlighting the significance of the doubly magic 100Sn

daughter nucleus in the trans-tin region.

In 1995, Poenaru et al. [32] conducted a study on the influence of nuclear masses, radii

and interaction potentials on the 12C decay of the 114Ba isotope. They demonstrated that

the decay of 114Ba via 12C results in the formation of doubly magic daughter nuclei,

specifically 100Sn or its neighbouring isotopes.

Satish et al [33], in 1996, investigated cluster decays from neutron-rich 146Ba, 152Ce,
156Nd, 160Sm and 164Gd by using the PCM model. They analyzed the shell effect in binding

energies and the corresponding relative preformation probabilities, which indicated that

the selected nuclei were stable against 4He and 10Be decay. Furthermore, for non-alpha-
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like metastable decays with (Q>0), they observed that the minimum half-life values were

obtained for decays resulting in the formation of the doubly magic 132Sn nucleus as the

daughter nucleus.

In 1997, Bonetti et al [34] have investigated the hindrance factors associated with the

radioactive decay of 233U via the emission of 4He, 24Ne and 28Mg nuclei using the one-level

R-matrix model. They found that by appropriately considering the internal wave function

structure, a good agreement with the experimental for the decay via 4He emission was

achieved. The authors also made predictions for cluster decays involving 28Mg, and 24Ne,

and observed a small experimental branching ratio between these two cluster decays.

In 2000, Santhosh et al. [35] have conducted a study on the half-lives of 12C decay

from Ba isotopes by considering the potential energy barrier as the sum of the Coulomb

and proximity potential (CPPM). They calculated a half-life value of 6.020 × 103 s for

the 12C decay of 112Ba, while the experimental value was found to be 5.620× 103 s. The

authors also determined that the emission of 12C from 112Ba was the most probable decay

mode.

Santhosh et al. [36] have conducted a study where they predicted the logarithmic half-

lives for 4He, 8Be, 12C, 20Ne, 24Mg, and 32S decay from various isotopes of the Nd parent

using the CPPM model. They found that the predicted half-life for 16O and 20Ne emissions

from 120Nd isotopes had the lowest values (T1/2 ≈ 1010s). The authors emphasized the

significance of the doubly magic 100Sn daughter nucleus in the trans-tin region based on

these conclusions. Additionally, Santhosh et al. have compared their predicted half-life

values for different cluster decay modes with those values reported by Shanmugam et al.

[37] using their CYEM model, Poenaru et al. [28] based on their ASAFM model, and

Satish et al. [38] based on their PCM model.

In 2009, Sushil Kumar [39] have conducted a study on the decay of 118−132,140−170Ce

nuclei. The investigation focused on the closed shell associated with the daughter nucleus

Sn. The author reported that the half-lives of cluster decay were at a minimum when the

neutron number of the daughter nucleus, Nd, was at 50 or 82 (corresponding to closed

shell configuration). For the Oxygen cluster decay from the 118−132,140−170Ce isotopes, the

minima of the decay half-life were observed at the magic numbers Nd=50 and 82. The

study concluded that the minimum half-lives for cluster decay modes leading to 100Sn and
132Sn indicates the high stability of these nuclei against such cluster decay modes.

In 2010, Mehta et al. [40] have conducted a study on the magic numbers in neutron-
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rich nuclei using the relativistic mean field (RMF) model. The authors utilized the axially

deformed RMF model with the NL3 parameter set. The focus of their investigation was on

the calculation of magic numbers at proton/neutron numbers N=Z=28 and N=32 and 40

near the neutron drip line in Calcium (Ca) and Nickel (Ni) isotopes. The study revealed

that the magicity at N = 28, 40 and 50 was re-established by the RMF study with NL3

parameter, indicating the persistence of these magic numbers in neutron-rich nuclei.

In their study, G. Shiva et al. [41] have focused on investigating the logarithmic half-

lives of various neutron-rich parent nuclei (56 ≤ Z ≤ 64) undergoing decay through alpha-

like and non-alpha-like clusters in the trans-tin region. The authors employed the CPPM

model to calculate the half-lives and compared them with the results obtained using the

UNIV and UDL formulas. They also compared their findings with the half-lives calculated

by Kumar et al. [33] using the PCM model, Santhosh et al. [42] using the CPPM model,

Sheng et al. [43] using Effective liquid drop model (ELDM), and Kumar [44] using the

PCM model. The authors reported that there was a similar trend among these studies.

They highlighted the neutron-proton asymmetry in the parent and daughter nuclei as a

potential factor contributing to higher half-life values in the case of decay leading to 132Sn.

The authors concluded that their findings emphasized the significance of the doubly magic

daughter nuclei 132Sn in cluster radioactivity and confirmed the existence of nuclear shell

structure.

In their study, Santhosh et al [45] focused on investigating the role of neutron magicity

in cluster radioactivity. They employed the CPPM model to examine the cluster decay

half-lives of 15N from 206−230Ac, 23F from 212−238Pa, 25Ne from 217−240U and 29Mg from
217−239U. The obtained results were compared with values obtained from the UNIV, UDL,

and Scalling law of Horoi. The study revealed the significance of the doubly magic daugh-

ter nucleus 208Pb in cluster radioactivity. Furthermore, it was evident that the role of

neutron shell closure was more crucial than proton shell closure in this phenomenon.

In their study conducted in 2012, Bao et al. [46] focused on investigating the half-lives

of C, O, Ne, Mg and Si decay from parent nuclei in the trans-lead region. They employed

the generalized liquid-drop model (GLDM) to treat the cluster decay process as a highly

asymmetric spontaneous fission. The half-lives of cluster decay modes were evaluated

using the WKB barrier-penetration probability, taking into account various factors such as

the nuclear proximity energy, mass asymmetry, accurate nuclear radius, phenomenological

pairing correction, and microscopic shell corrections. They have concluded that the cluster

decay half-lives appear to be a minimum for the decay leading to the doubly magic
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daughter nuclei 208
82 Pb. Indeed the maximum binding energy of one fragment leads to a

maximum Q-value for the cluster decay. They have mentioned that calculated results

match well with the experimental data.

In 2013, Santhosh et al. [47] have calculated the stability of isotopes 248−254Cf against

alpha and cluster decay using the CPPM model. These authors have found that these

nuclei are stable against light cluster emission but unstable against heavy cluster emissions

(A2 ≥ 40). They mentioned that heavy cluster emissions from these nuclei result in

the formation of the doubly magic 208Pb daughter nucleus or a neighbouring one. The

authors concluded that, in most cluster decays, the half-lives decrease with the inclusion

of quadrupole deformation (β2) because it reduces the width and height of the barrier.

Additionally, the inclusion of hexadecapole deformation has no influence on half-life time.

Ismail et al. [48] have investigated decay half-lives and preformation probabilities for

a set of 304 cluster emitters in the range 87≤ Z ≤ 96 and a set of 390 α-emitters in

the range 52≤ Z ≤ 120 by using Wentzel-Kramers-Brillouin (WKB) approximation. The

authors checked the validity of this approach against CPPM by comparing logarithmic

half-lives and barrier penetration probabilities. They concluded that the low values of the

cluster decay half-lives at N = 126 reveal the role of neutron magicity. They mentioned

that their results are found to be in good agreement with CPPM calculations and with

the available experimental data.

Deepthy et al. [49] have investigated the 4He, 12C, 16O, 20Ne and 24Mg decays from

proton-rich platinum isotopes within the framework of the effective liquid drop model.

The authors have concluded that 4He decay from 166Pt isotopes is the most probable

decay mode. Additionally, 12C decay from 166Pt is the most probable decay mode in Pt

isotopes, since it has the minimum logarithmic half-life. The authors have predicted the

shell closure effect for 16O, 20Ne, and 24Mg decays at Nd=82, which is a magic number.

In 2020, Yonghao et al. [50] have investigated the possibility of cluster radioactivity

(CR) in the neutron-deficient nuclei of the trans-tin region. They utilized the ELDM,

GLDM, and several analytical formulas for the analysis. The authors found that the

presence of a Q-value shell effect (shell closure) at Nd=50 (100Sn) has an influences on

the half-lives. They also mentioned that the daughter nuclei with Nd=50 exhibit the

minimum cluster decay half-lives. Additionally, they reported that the half-lives of α-like

cluster decay leading to isotopes with Nd=50 are easier to measure compared to non α-like

decays.
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In 2022, Joshua et al. [51] have evaluated cluster decay half-lives for even-even iso-

topes 112−122Ba in both ground and intrinsic excited states along the proton drip line.

They calculated the decay half-lives using the performed-cluster decay model (PCM) and

determined the penetration probability from the interaction potential using the Wentzel-

Kramers-Brillouin (WKB) approximation. The authors reported that the minimum decay

half-lives for cluster decay of 12C from 112−122Ba isotopes were obtained for decays leading

to daughter nuclei 100Sn. Furthermore, they found that the inclusion of excitation does

not dominate or rule out the role of magicity. The authors concluded that the calculated

decay half-lives for both the relativistic R3Y NN potential and M3Y potential are in

reasonable good agreement with the experimental lower limit of 114Ba.

1.2.2 A Brief Overview of the Experimental Investigation of

Cluster Radioactivity

The cluster decay was first observed experimentally via the spontaneous emission of 14C

from the decay of 223Ra by Rose and Jones [52] in 1984 at Oxford University by using

a solid state counter telescope. The branching ratio for 14C decay relative to alpha de-

cay from 223Ra is (8.5 ± 2.5)×10−10, corresponding to a reduced width (preformation

probability) smaller by a factor of ∼ 105 to 106. This means that (8.5 ± 2.5)×10−10

carbon nuclei are emitted for one alpha particle. Aleksandrov et al [53] have confirmed

the observation of spontaneous emission of 14C decay from 223Ra parent isotopes. In this

decay branching ratio (7.6 ± 3.0)×10−10 for 14C decay relative to alpha decay. They

utilized a ∆E-E detection system to investigate the emitted 14C from the source. sub-

sequently, the discovery was further corroborated by S. Gales et al [54] and Price et al [55].

Table 1.2: Experimental results of Cluster Radioactivity.

Parent Emitted Daughter Q-value Log TExpt.
1/2 Branching Reference

nuclei cluster nuclei (MeV) (s) ratio

114Ba 12C 102Sn 18.3 - 20.5 >3.63 < 10−4 [56]

114Ba 12C 102Sn 18.3 - 20.5 >4.10 3.4× 10−5 [57]

221Fr 14C 207Tl 31.28 14.52 (8.14± 1.14)10−13 [58]

221Ra 14C 207Pb 32.39 13.39 (1.15± 0.91)10−12 [58]

222Ra 14C 208Pb 33.05 11.01 (3.7± 0.6)10−10 [55]

222Ra 14C 208Pb 33.05 11.09 (3.1± 1.0)10−10 [59]

(Continued on next page)
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Table 1.2 – continued from previous page

Parent Emitted Daughter Q-value Log TExpt.
1/2 Branching Reference

nuclei cluster nuclei (MeV) (s) ratio

222Ra 14C 208Pb 33.05 11.22 (2.3± 0.3)10−10 [60]

223Ra 14C 209Pb 31.85 15.06 (8.5± 2.5)10−10 [52]

223Ra 14C 209Pb 31.85 15.25 (5.5± 2.0)10−10 [54]

223Ra 14C 209Pb 31.85 15.11 (7.6± 3.0)10−10 [53]

223Ra 14C 209Pb 31.87 15.20 (6.1± 1.0)10−10 [55]

223Ra 14C 209Pb 31.85 15.32 (4.7± 1.3)10−10 [61]

223Ra 14C 209Pb 31.85 15.19 (6.4± 0.4)10−10 [60]

223Ra 14C 209Pb 31.85 15.14 (7.0± 0.4)10−10 [62]

223Ra 14C 209Pb 31.85 15.04 (8.9± 0.4)10−10 [63, 64]

224Ra 14C 210Pb 30.54 15.86 (4.3± 1.2)10−11 [55]

224Ra 14C 210Pb 30.54 15.68 (6.5± 1.0)10−11 [62]

225Ac 14C 211Bi 30.48 17.16 (6.0± 1.3)10−12 [65]

226Ra 14C 212Pb 28.21 21.19 (3.2± 1.6)10−11 [59]

226Ra 14C 212Pb 28.21 21.24 (2.9± 1.0)10−11 [66]

226Ra 14C 212Pb 28.21 21.34 (2.3± 0.8)10−11 [67]

228Th 20O 208Pb 44.72 20.72 (1.13± 0.22)10−13 [68]

231Pa 23F 208Pb 51.84 26.02 (9.97+22.9
−8.28)10−15 [69]

230U 22Ne 208Pb 61.59 >18.20 (4.8± 2.0)10−14 [70, 71]

230U 22Ne 208Pb 61.58 20.14 (1.3± 0.8)10−14 [72]

230Th 24Ne 206Hg 57.78 24.61 (5.6± 1.0)10−13 [73]

232Th 24,26Ne 208,206Hg 55.62,55.97 >29.20 < 2.82× 10−12 [74]

231Pa 24Ne 207Tl 60.42 23.23 6× 10−12 [75]

231Pa 24Ne 207Tl 60.42 22.88 (1.34± 0.17)10−11 [69]

232U 24Ne 208Pb 62.31 21.08 (2.0± 0.5)10−12 [76]

232U 24Ne 208Pb 62.31 20.42 (8.68± 0.93)10−12 [77]

232U 24Ne 208Pb 62.31 20.40 (9.16± 1.10)10−12 [78]

233U 24,25Ne 209,208Pb 60.50,60.75 24.83 (7.5± 2.5)10−13 [73]

233U 24,25Ne 209,208Pb 60.50,60.75 24.84 (7.2± 0.9)10−13 [79]

234U 24,26Ne 210,208Pb 58.84,59.47 25.92 (9.06± 6.60)10−14 [78, 80]

234U 24,26Ne 210,208Pb 58.84,59.47 25.88 (9.90± 9.90)10−14 [78, 81]

235U 24,25Ne 211,210Pb 57.36,57.83 27.42 (8.06± 4.32)10−12 [78, 81]

236U 24,26Ne 212,210Pb 55.96,56.75 >25.90 < 9.2× 10−12 [81]

232U 28Mg 204Hg 74.32 >22.26 < 1.18× 10−13 [77]

(Continued on next page)
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Table 1.2 – continued from previous page

Parent Emitted Daughter Q-value Log TExpt.
1/2 Branching Reference

nuclei cluster nuclei (MeV) (s) ratio

233U 28Mg 205Hg 74.24 >27.59 2.0× 10−13 [79]

234U 28Mg 206Hg 74.13 27.54 (2.3+0.8
−0.6)10−13 [81]

234U 28Mg 206Hg 74.13 25.14 (1.38± 0.25)10−13 [80]

235U 28,29Mg 207,206Hg 72.20,72.61 >28.09 < 1.8× 10−12 [81]

236U 28,30Mg 208,206Hg 71.69,72.51 27.58 2.0× 10−14 [82]

237Np 30Mg 207Tl 75.02 >26.93 < 8.0± 10−14 [73]

237Np 30Mg 207Tl 75.02 >27.97 < 1.8× 10−14 [83]

236Pu 28Mg 208Pb 79.67 21.67 2.0× 10−14 [84]

236Pu 28Mg 208Pb 79.67 21.52 (2.7± 0.7)10−14 [85]

238Pu 28,30Mg 210,208Pb 75.93,77.03 25.70 (5.62± 3.97)10−17 [86]

238Pu 32Si 206Hg 91.21 25.27 (1.38± 0.50)10−16 [86]

240Pu 34Si 206Hg 90.95 >25.52 < 6× 10−15 [87]

241Am 34Si 207Tl 93.84 >22.71 < 2.6× 10−13 [88]

241Am 34Si 207Tl 93.84 >24.41 < 5.4× 10−15 [73]

241Am 34Si 207Tl 93.84 >25.26 < 7.4× 10−16 [78]

242Cm 34Si 208Pb 96.53 23.15 < 1.0× 10−16 [89]

The experimental observation of clusters, such as 14C, 20O, 24Ne, 28Mg, and 32Si, decaying

into daughter nuclei in trans-lead region, either the doubly magic 208Pb or its neighbors,

has been documented [52, 90, 91]. Furthermore, predictions indicate the existence of

another cluster radioactivity (CR) island in the trans-tin region, where clusters decay

into the daughter nuclei close to the doubly magic nucleus 100Sn [92]. The detection of

heavier clusters, such as 24Ne from 231Pa, 233U and 230Th, were detected by Sandulescu et

al [73, 79, 93, 94] in Dubna. Bonetti et al [71] experimentally investigated the spontaneous

emission of neon clusters (22Ne and 24Ne) from 230U isotopes using glass track detectors.

Various experimental groups worldwide have reported the observation of 14C decay in
221Fr, 221−224,226Ra and 225Ac; 20O decay in 228Th; 23F decay in 231Pa; 24Ne decay in
230,232Th, 231Pa and 232−236U; 28Mg decay in 232−236U, 237Np, and 236,238Pu; 30Mg decay in
238Pu; 32Si decay in 238Pu, and 34Si decay of 238,240Pu, 241Am, and 242Cm. These findings

are compiled in Table 1.2.
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1.3 Theoretical models

1.3.1 Relativistic mean field model

The self-consistent mean field (SCMF) model has indeed been successful in describing

many nuclear properties across the nuclear chart from proton to neutron drip-line. In

1970s, a significant improvement was made by introducing the relativistic concept into

the mean-field model, based on earlier ideas of Teller and Duerr [95, 96]. Walecka [97, 98]

and Brockmann [99, 100] performed actual calculations and laid the foundation of the

relativistic approach in nuclear physics. This model is based on the relativistic mean field

approximation and provides a microscopically consistent, and relatively simple treatment

of the nuclear many-body problem via adjustment of the model parameters, coupling

constants, and effective mass to the global properties of the nuclei on the stability line.

Notably, this model does not require further parameter fitting for nuclei located away

from the stability line. One of the advantages of the relativistic mean field model is its

ability to describe the properties of the entire nuclear chart, ranging from light nuclei to

super-heavy nuclei. The nucleonic and mesonic degrees of freedom are clearly included

from the beginning in the relativistic framework. The Relativistic Mean Field Model

(RMF) can reproduce the densities and binding energies for finite nuclear matter and also

yield spin-orbit interaction automatically in nuclei. Although the ground state properties

of nuclei with the non-relativistic density-dependent Hartree-Fock (DDHF) calculations

using Skyrme forces are comparable to RMF model, the RMF results are found to have

a slight edge over DDHF. The detailed formalism of the relativistic mean-field model is

discussed in Chapter 2 of this thesis work.

1.3.2 The Cluster Radioactivity

Before the experimental conformation of cluster radioactivity (CR) by Rose and Jones

in 1984, it was first theoretically predicted in 1980 by Sandulescu, Poenaru, and Greiner

based on Quantum Mechanical Fragmentation Theory (QMFT). In the early 1970s, Gupta,

Scheild, Sandulescu and Greiner [101, 102, 103] investigated the cold reaction (fusion or

fission) valley for trans-actinides. Sandulescu et al. employed two limiting approaches to

predict this new decay mode. The first approach involves super-asymmetric fission, which

is a dynamical mass fragmentation process. The second approach is strongly asymmetric

two-body fragmentation, similar to α-decay, where the heavy cluster is emitted through
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a barrier.

The phenomenon of cluster radioactivity has been explained by making use of many

theoretical models and approaches. In general, there exist two types of approaches for

predicting new decay modes. In the first kind of approach, the clusters made of several

nucleons are performed in the parent nucleus before it penetrates the nuclear interaction

barrier [104, 105, 106]. The exponential dependence of the calculated tunneling prob-

ability thus calculated leads to a modified Geiger-Nutall law of cluster radioactivity of

the particular cluster emission, relating half-lives for CR to the Q value of the reaction.

These approaches are commonly referred to as the Preformed cluster model. The parent

nucleus is assumed to be deformed continuously and reaches the saddle or scission shape

to undergo cluster radioactivity [36, 94, 107]. In This approach, Gamow’s idea of quantum

mechanical barrier penetration is still used, but without worrying whether the cluster is

performed within the parent nucleus or not. Here, the parent nucleus is assumed to un-

dergo continuous dynamical changes from an initial one-nucleus system to final separated

multi-nucleus systems as it penetrates the nuclear potential barrier and reaches the saddle

configuration, where both the masses and charges of the fission fragments remain fixed.

These approaches are generally known as Unified Fission Models (UFM) [108]. In this

approach, the effective liquid drop model (ELDM) is chosen as a fission-like model. A

detailed discussion of the ELDM model is presented in Chapter 2.

1.4 Motivation to take up the present work

The primary aim of reliable theoretical models in nuclear physics is to explain the available

experimental results and estimate the properties of the atomic nuclei throughout the

nuclear chart. But, all the experimental observations of nuclear reaction and nuclear

decay modes available in the literature could not be explained accurately by a single

theoretical model. So, there is still a large scope for further progress both from the

theoretical as well as experimental study. The present work is primarily motivated by

theoretical study.

The calculated results reported were based on several theoretical models and many

empirical formulas proposed earlier. However, there is still a large scope for investigating

new decay modes of various parent nuclei in different regions which are experimentally

practicable. Moreover, the selection of the most favorable decay modes from an isotope

of a parent nucleus is of paramount importance in the experimental analysis of cluster

radioactivity phenomena.
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In this thesis, we have used the RHB model to calculate bulk properties such as

binding energy, charge radius, and the total reaction cross section with light and medium

mass nuclei as a projectile on 12C and proton as targets at different energies using the

Glauber model. We studied the significance of the doubly magic daughter nucleus 100Sn

(Nd= 50) and the role of shell effects in trans-tin cluster radioactivity. The logarithm of

half-lives was calculated for various clusters decay modes, including 8Be, 12C, 16O, 20Ne,

and 24Mg, originating from various isotopes of trans-tin and transition metal regions.

These half-lives were calculated using the ELDM model, UDL, and Horoi formula for

cluster radioactive decay. The Geiger-Nuttal plots for different cluster emissions were

studied. Additionally, the significance of the doubly magic daughter nucleus 208Pb (Nd=

126) and nuclear shell effects in Th, U, and Pu isotopes were investigated. We examine

the structural properties of these isotopes using the relativistic mean field formalism

with NL3* force parameters. The α-decay and cluster decay half-lives of the considered

isotopes were systematically calculated, utilizing the Q-values obtained from the RMF

(NL3*) formalism. Furthermore, We predicted the half-lives of possible nuclei undergoing

two-proton radioactivity within the range of 30 ≤ Z ≤ 40, as determined by the RMF

(NL3*) model.

1.5 Plan of the thesis

The thesis is organized as follows:

In Chapter 2, mathematical details of the model employed, including the Relativistic

Hartree Bogoliubov model with density-dependent meson exchange (DD-ME2), density-

dependent point coupling (DD-PC1) parameter sets, the non-linear NL3* parameter set

in the Relativistic Mean-field (RMF) model, and the Glauber model, are given. A detailed

description of the effective liquid drop (ELDM) model, as well as other empirical formulas

such as Universal Decay Law (UDL), Tavares-Medeiros (TM), Viola-Seaborg (VS), and

Horoi formula, for calculating alpha decay, cluster decay and proton radioactivity, has

also been presented in brief.

In Chapter 3, we present the results related to the nuclear reaction studies of He, Li,

Be, B, C, Ca, Ni, Zr, and Sn isotopes on 12C and proton targets. First of all, calculate mi-

croscopic nuclear densities for these isotopes with relativistic Hartree-Bogoliubov (RHB)

formalism. Further, other ground-state bulk properties are also calculated and compared

with the available experimental data. A detailed study of reaction cross-sections and
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differential elastic scattering cross-sections at various incident energies are presented. We

found that the total nuclear reaction cross-section increased as a function of the mass

number for both the target and projectile nuclei. The elastic scattering angular distribu-

tions are calculated for various systems at different energies. It has been observed that

the results obtained using the relativistic framework with the DD-ME2 parameter set are

in better agreement with the experimental data in comparison with the results obtained

with the DD-PC1 parameter set.

In Chapter 4, we studied the cluster radioactivity in the trans-tin region for (106−116Xe,
108−120Ba, 114−126Ce, and 118−128Nd) and in transition metal region for (156−166Hf, 158−172W,
160−174Os, 166−180Pt, and 170−182Hg) nuclei. These half-lives have been calculated using the

shape parametrization model of cluster decay in conjunction with the axially deformed

relativistic mean-field (RMF) model with the NL3* parameter set. It has been observed

that in the trans-tin region, the minimum cluster decay half-lives are found at nearly

doubly magic or doubly magic daughter 100Sn nucleus (Nd = 50, Nd is the neutron

number of the daughter nucleus) and in transition metal region at Nd = 82, which is a

magic number.

In Chapter 5, we have examined the binding energy per nucleon, RMS radii, and two-

neutron separation energies (S2n) for the Th, U, and Pu isotopes using the relativistic

mean field (RMF) model with NL3* force parameter set. The most stable isotopes are

found to be at N ∼ 126 (216Th, 218U, and 220Pu) in Th, U, and Pu isotopes, respectively.

Also, the alpha and cluster decay half-lives are carried out by the ELDM model and

compared with the results obtained by the latest empirical relations, namely Universal

Decay Law (UDL), Tavares- Medeiros (TM), Viola-Seaborg (VS), and the Scaling Law

given by Horoi et al., are found to be in good agreement. Our study reveals the role

of nearly doubly magic or doubly magic daughter 208Pb nucleus (Nd = 126, Nd is the

neutron number of the daughter nucleus) in cluster decay processes.

In Chapter 6, we have performed calculations to study the ground-state properties,

i.e., binding energy per nucleon and two-proton separation energy of Fe, Ni, Zn, Ge, Kr,

and Zr isotopes by using the relativistic mean-field (RMF) approach with force parameter

NL3*. The obtained results are in excellent agreement with the available experimental

data. We have also performed systematic studies of the two-proton (2p) radioactivity, the

two-proton decay energy (Q2p) using the RMF (NL3*) approach, the finite-range droplet

model (FRDM), and the Weizsacker-Skyrme-4 (WS4). Then, the effective liquid drop

model (ELDM) is applied to find out the two-proton decay half-lives using three kinds
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of evaluated Q2p values. The two-proton decay half-lives calculations are also carried out

by using empirical formulas, namely Liu and Sreeja, and their comparisons with ELDM

results are found to be in agreement. Also, we predict the half-lives of possible nuclei

of the two-proton radioactivity in the range 30 ≤ Z ≤ 40 with released energy Q2p > 0

obtained by RMF (NL3*) model. The estimated results reveal a clear linear connection

between the logarithmic two-proton decay half-lives log10T1/2 and Coulomb parameters

[(Z0.8
d + l0.25) Q

−1/2
2p ].

In Chapter 7, the summary of the thesis work and the future outlook of the thesis

have been presented.



Chapter 2

Mathematical Formalism

2.1 Introduction

Many theoretical models have been constructed to find out the structure of nuclear systems

throughout the nuclear chart. Among them, the relativistic mean field (RMF) model

has been quite successful and has been used to investigate bulk properties, including

the density distribution of the nucleus, over the last few decades. In this model, the

many-body system is converted into a one-body problem, and pairing correlations are

incorporated to achieve an acceptable level of accuracy. The RMF model was developed

within the framework of quantum hadrodynamics (QHD). The pairing correlation is taken

care of using the Bardeen-Cooper-Schrieffer (BCS) approach.

The Glauber approach is used to study the total reaction cross-section for reactions

between projectile and target nuclei. At intermediate energies, the reaction cross-section

reflects the geometrical size of the nucleus. The projectile nucleus is supposed to be a core

nucleus plus one valence nucleon (core + one nucleon) system. We have to fit the core

and target densities in terms of a combination of Gaussians. This model is a microscopic

reaction theory of high-energy collision based on the eikonal approximation and the bare

nucleon-nucleon interaction.

Cluster radioactivity can be studied using two main approaches; performed Cluster

Model and the fission-based approach. The ELDM (fission based) is a successful model

for studying two-proton radioactivity, α-decay, and cluster radioactivity. In this model,

the nucleus is assumed to be deformed continuously and reach the saddle or scission

21
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configuration to undergo cluster radioactivity. By using different combinations of the

inertia coefficients and mass transfer descriptions, the experimental half-lives of these

decay modes, such as alpha and cluster decay, could be reproduced well. A large number

of empirical formulas with various coefficients for half-live calculations are discussed in

this chapter. In the present thesis, these theoretical models have been taken and used to

analyze the nuclear system. This chapter presents a detailed discussion of the relativistic

mean field model along with the Glauber theory, and an effective liquid drop model for

half-lives calculation is provided below.

2.2 Relativistic mean field model

The Relativistic Mean Field (RMF) model has been successfully applied to study the

structural properties of nuclei throughout the nuclear chart [98, 109, 110, 111]. In 1951,

the relativistic field model was first introduced by Schiff [112]. In this theory, he had

incorporated non-linear and linear self-interaction in the classical neutral scalar meson

field. In 1955, Johnson and Teller made significant modifications to the Schiff theory

by introducing the linear interaction of the scalar field, which explained several empiri-

cal characteristics of nuclear structure [95]. Rozsnayi in 1961 performed the relativistic

Hartree calculations of finite nuclear structure. The complete form of the RMF model

was introduced in 1974 by Walecka [97, 98], incorporated σ, ω, and ρ mesons to describe

the finite and infinite systems. In the last few decades, the RMF model has been success-

fully applied to study the properties of both infinite nuclear matter and finite nuclei. The

ground state properties such as binding energy, matter radii, charge radii, density profile,

etc. have been calculated by the relativistic mean-field theory, and excellent agreement

has been found with experimental results. The relativistic mean-field (RMF) theory has

the advantage that, with proper relativistic kinematics and with the mesons and their

properties already known or fixed from the properties of a few finite nuclei, it gives better

results for various ground-state properties. These include the binding energy, root mean

square radii, and the quadrupole deformation, not only of spherical nuclei but also of

deformed nuclei lying close to the β-stability line, as well as for the nuclei lying away

from the β-stability line [10, 109, 113, 114].

The starting point of the Relativistic Mean Field (RMF) model is the effective La-

grangian containing the nucleonic and mesonic degrees of freedom. This model is a phe-

nomenological model of the nuclear many-body problem, which is based on some primary

aspects: (1) Nucleons are considered as point-like particles, (2) The rule of Relativity and
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causality are strongly taken into account, (3) The theory is fully lorentz invariant, (4) The

particles move independently in mean fields which originate from nucleon-nucleon interac-

tions. Under these conditions, the nucleons are treated as Dirac spinors ψ. The effective

point-like particles are called mesons Φj, where j stands for σ, ω, ρ and photon fields.

The π-meson is not taken into the relativistic mean field (Hartree) model because of its

pseudo-scalar nature [110]. The details of the RMF model can be found in Refs.[111, 115].

The basic ingredient of the RMF model is the relativistic Lagrangian density functional

for a nucleon-meson many-body system which is given as [10, 116, 117, 118, 119, 120]

L = ψi(iγ
µ∂µ −M)ψi +

1

2
∂µσ∂µσ −

1

2
m2
σσ

2 − 1

3
g2σ

3 − 1

4
g3σ

4 − gσψiψiσ

−1

4
ΩµνΩµν +

1

2
m2
ωV

µVµ +
1

4
c3(VµV

µ)2 − gwψiγµψiVµ −
1

4

−→
B µν .

−→
B µν

+
1

2
m2
ρ

−→
R µ.
−→
R µ − gρψiγµ−→τ ψi.

−→
R µ − 1

4
F µνFµν − eψiγµ

(1− τ3i)

2
ψiAµ. (2.2.1)

Here σ, Vµ and
−→
R µ are the fields for isoscalar-scalar σ-meson, isoscalar-vector ω-meson,

and isovector-vector ρ-meson, respectively. Aµ is the electromagnetic field. The ψi are the

Dirac spinors for the nucleons whose third component of isospin is denoted by τ3i. Here

gσ, gω, gρ and e2/4π = 1/137 are the coupling constants for σ, ω, ρ mesons, and photons,

respectively. g2, g3, and c3 are the parameters for the nonlinear terms of σ and ω mesons.

M is the mass of the nucleon and mσ, mω and mρ are the masses of the σ, ω and ρ meson,

respectively. Ωµν ,
−→
B µν and F µν are the field tensors for the V µ,

−→
R µ and the photon fields

Aµ, respectively [109, 114]:

Ωµν = ∂µV ν − ∂νV µ (2.2.2)

−→
B µν = ∂µ

−→
R ν − ∂ν

−→
R µ (2.2.3)

F µν = ∂µAν − ∂νAµ (2.2.4)

From the above relativistic Lagrangian, we get the Dirac equation for the nucleons and

the Klein-Gordon type equations for mesons and photons. These obtained equations are

solved by expanding the upper and lower components of the Dirac spinors (ψ) and the

boson fields in an axially deformed harmonic oscillator basis with an initial deformation

β0. The total energy of the system is given by

Etotal = Epart + Eσ + Eω + Eρ + Ec + Epair + Ec.m., (2.2.5)

where Epart is the sum of the single-particle energies of the nucleons and Eσ, Eω, Eρ, Ec,

Epair, Ec.m. are the contributions of the meson fields, the Coulomb field, pairing energy
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and the center-of-mass energy, respectively, are given below.

Epart =
A∑
i=1

v2
i

∫
d3rψ†i {−i

−→α .
−→
∇ + βM∗ + V }ψi

=
A∑
i

v2
i εi

Eσ =

∫
d3r{1

2
(∇σ)2 + Uσ}

Eω = −
∫
d3r

1

2
{(∇V0)2) +m2

ωV
2

0

Eρ = −
∫
d3r

1

2
{(∇ρ0)2) +m2

ρρ
2
0

Ec = −
∫
d3r

1

2
(∇A0)2)

Ec.m. = −3

4
~ω0 = −3

4
41A−1/3,

Epair = −G(
A∑
i=1

uivi)
2.

The quadrupole deformation parameter β2 is extracted from the calculated quadrupole

moments of neutrons and protons through the following relation

Q = Qn +Qp =

√
16π

5

(
3

4π
AR2β2

)
, (2.2.6)

where R = 1.2A1/3. The charge radius is calculated using the following formula:

rc =
√
r2
p + 0.64, (2.2.7)

The factor 0.64 in Eq 2.2.7 accounts for the finite size effects of the proton.

The proton radius (rp), neutron radius (rn) and matter radius (rm) are given as [10]

< r2
p >=

1

Z

∫
ρp(r)r

2
pdτp, (2.2.8)

< r2
n >=

1

Z

∫
ρn(r)r2

ndτn, (2.2.9)

< r2
m >=

1

A

∫
ρ(r)r2dτ, (2.2.10)

This model predicts good results in terms of binding energy, root mean square radius,

and quadrupole deformation parameter, not only for stable nuclei but also for nuclei

throughout the periodic table. This relativistic mean-field model, especially with the NL3
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effective interaction (or with a slightly improved version, i.e., NL3* effective interaction),

has provided an excellent description of many nuclear reactions and structural studies

of spherical and deformed nuclei. The well-known NL3* parameter sets are presented in

Table 2.1 [121]. This parameter set not only reproduces the properties of stable nuclei

but also predicts those away from the valley of β-stability.

Table 2.1: The parameter sets of NL3* in the Lagrangian, masses in MeV, while g2 is in

fm−1.

M = 939.00 mω = 782.60 mρ = 763.00 mσ = 502.5742

gσ = 10.0944 gω(ρ(sat)) = 12.8065 gρ = 4.5748 g2 = -10.8093

g3 = -30.1486 - - -

2.2.1 Pairing calculation in RMF formalism

In medium and heavy nuclei, pairing correlations play a very vital role in calculating the

nuclear properties. The constant gap BCS model is valid for nuclei not too far from the

valley of β-stability line. The BCS model may fail for light neutron-rich nuclei (which is

not the case in this study; the nuclei selected here are not light neutron-rich nuclei), and

the RMF value with BCS treatment should be credible. The pairing energy expression is

given as

Epair = −G

[∑
i>0

uivi

]2

(2.2.11)

with G the pairing force constant, v2
i and u2

i = 1 − v2
i are the occupation probabilities

[122, 123, 124, 125].

The variational procedure with respect to the occupation numbers v2
i , gives the BCS

equation

2εiuivi −∆(u2
i − v2

i ) = 0 (2.2.12)

and the gap ∆ is defined as

∆ = G
∑
i>0

uivi. (2.2.13)

This is the BCS equation for pairing energy. The densities are contained within the

occupation number

ni = v2
i =

1

2

[
1− εi − λ√

(εi − λ)2 + ∆2

]
. (2.2.14)
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The pairing energy is determined as

Epair = −∆
∑
i>0

uivi. (2.2.15)

The pairing energy Epair depends on the occupation probabilities ui and vi. We use the

constant gaps for proton and neutron, as given in [125, 126, 127]:

∆p(MeV ) = RBse
sI−tI2/Z1/3 (2.2.16)

and

∆n(MeV ) = RBse
−sI−tI2/A1/3 (2.2.17)

with R= 5.72 MeV, s=0.118, t=8.12, Bs = 1 and I = (N − Z)/(N + Z). This type

of prescription for pairing effects, both RMF and Skyrme-based approaches have already

been used by us and many other authors [117]. For this pairing approach, it has been

shown [117, 128] that the results for binding energies and quadrupole deformations are

almost identical to the predictions of the relativistic Hartree-Bogoliubov (RHB) approach.

2.3 Relativistic Hartree-Bogoliubov model

The Density functional theory (DFT) is a successful method for understanding nuclear

many-body dynamics. The Covariant density functional theory (CDFT) is based on en-

ergy density functionals (EDF) and has been highly successful in investigating various

nuclear structure phenomena across the entire nuclear chart. The relativistic Hartree-

Bogoliubov (RHB) model [129] is based on the density-dependent effective interactions.

Density-dependent meson exchange [130] and point coupling interactions [131] are used for

the analysis of nuclear structural phenomena. The key difference between these two mod-

els lies in the treatment of the interaction range, the meson, and the density dependence.

These models are briefly discussed in the following subsections.

2.3.1 Meson-Exchange model

In the DD-ME2 model, the nucleus is described as a system of Dirac nucleons. These

nucleons interact via the exchange of mesons with finite masses which leads to finite

range interactions [121, 130, 132]. The isoscalar-scalar σ meson, the isoscalar-vector ω

meson, and the isovector-vector ρ meson constitute the minimum set of meson fields for a

quantitative description of nuclei. The Lagrangian density for the meson exchange model

[98, 109, 133] can be written as:

L = LN + LM + Lint. (2.3.18)
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The Lagrangian density corresponding to free nucleon is denoted by LN and takes

LN = ψ[iγµ∂
µ −m]ψ, (2.3.19)

Where, m and ψ corresponds to bare nucleon mass and Dirac spinor respectively. The

Lagrangian density for free mesons (LM ) and electromagnetic fields (LA) are given as:

Lσ =
1

2
(∂µσ∂

µσ −m2
σσ

2), (2.3.20)

Lω = −1

2
(ΩµνΩ

µν −m2
ωωµω

µ), (2.3.21)

Lρ = −1

4

−→
R µν .

−→
R µν +

1

2
m2
ρ
−→ρµ.−→ρ µ, (2.3.22)

LA = −1

4
FµνF

µν , (2.3.23)

Lint is the interaction lagrangian between nucleons and mesons, given as:

Lint = −gσ
−→
ψ ρψ − gω

−→
ψ γµω

µψ − gρ
−→
ψ γµ
−→τ −→ρ µψ − eψγµψAµ, (2.3.24)

The Lagrangian density for DD-ME2 interaction is the sum of the Lagrangian density

for free nucleon, Lagrangian density for the free mesons and electromagnetic fields and is

expressed as

L = ψ[γ(ι∂ − gωω − gρ−→ρ −→τ − eA)−m− gσσ]ψ +
1

2
(ðσ)2 − 1

2
m2
σσ

2

−1

4
ΩµνΩ

µν +
1

2
m2
ωω

2 − 1

4

−→
R µν .

−→
R µν +

1

2
m2
ρ
−→ρ µ.
−→ρ µ − 1

4
FµνF

µν , (2.3.25)

where ψ is the Dirac spinor and m denotes the bare nucleon mass. mσ, mω, and mρ

are the masses of σ, ω and ρ mesons, respectively. gσ, gω, and gρ and e2

4π
= 1

137
are the

coupling constants for the σ, ω and ρ mesons and photons, respectively. The −→τ denotes

the Pauli isospin matrices. Ωµν , Rµν , and F µν as field tensors of the vector field ω, ρ, and

photon can be written:

Ωµν = ∂µων − ∂νωµ, (2.3.26)

−→
R µν = ∂µ−→ρ ν − ∂ν−→ρ µ, (2.3.27)

F µν = ∂µAν − ∂νAµ. (2.3.28)

We obtain the total energy by integrating the Hamiltonian density [110] over the r-space
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which depends on the Dirac spinors ψ, ψ and the meson fields σ, ωµ,−→ρ µ, Aµ :

ERMF [ψ, ψ, σ, ωµ,−→ρ µ, Aµ] =

∫
d3rH(r). (2.3.29)

The coupling of σ-meson and ω-meson to the nucleon field [132, 133, 134] in the phe-

nomenological approach is given by

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω, (2.3.30)

where

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
(2.3.31)

is a function of x = ρ/ρsat, and ρsat denotes the baryon density at saturation in symmet-

ric nuclear matter. The eight real parameters in (Eq. 2.3.30) are not independent, but

constrained as follows:

fi(1) = 1, f ”
σ(1) = f ”

ω(1), and f ”
i (0) = 0 (2.3.32)

These five constraints reduced the number of independent parameters to three. The three

additional parameters in the isoscalar channel are gσ(ρsat), gω(ρsat), and mσ , which is

the mass of the phenomenological σ-meson. The asymmetric nuclear matter calculations

[135] within the Dirac-Brueckner approach suggested the functional form of the density

dependence of ρ-meson couplings as

gρ(ρ) = gρ(ρsat)e
−aρ(x−1). (2.3.33)

The isovector channel is parameterized by gρ(ρsat) and aρ. The eight independent pa-

rameters (seven coupling parameters and the mass of the σ meson) have been adjusted

to reproduce the properties of symmetric and asymmetric nuclear matter and to ground-

state properties of spherical nuclei. The DD-ME2 parameter set used in this study is

presented in Table 2.2.

Table 2.2: The parameter sets of DD-ME2.

M=939.00 mω=783.00 mρ=763.00 mσ=550.124

gσ(ρ(sat))=10.5396 gω(ρ(sat))=13.0189 gρ(ρ(sat))=3.6836 ap=0.5647

aσ=1.3881 aω=1.3892 bσ=1.0943 bω=0.9240

cσ=1.7057 cω=1.4620 dσ=0.4421 dω=0.4775
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2.3.2 Point-Coupling model

The point-coupling model represents an alternative formulation of the self-consistent RMF

framework. The four Fermionic vertices with corresponding fields are given below which

are used in the present study.

(1) The isoscalar-scalar (ψψ)2 correspond to σ-field

(2) The isoscalar-vector (ψγµψ)(ψγµψ) correspond to ω-field

(3) The isovector-vector (ψ−→τ γµψ)(ψ−→τ γµψ) correspond to ρ-field

(4) ∂ν(....)∂
ν(....) are corresponding fields gradient couplings.

The effective Lagrangian for the density-dependent point coupling model that includes the

isoscalar-scalar, isoscalar-vector, and isovector-vector four-fermion interactions are given

by [131]

L = ψ(iγ.∂ −m)ψ − 1

2
αS(ρ̂)(ψψ)(ψψ)− 1

2
αV (ρ̂)(ψγµψ)(ψγµψ)

−1

2
αTV (ρ)(ψ−→τ γµψ)(ψ−→τ γµψ) +

1

2
δS(∂νψψ)(∂νψψ)

−eψγ.A(1− τ3)

2
ψ. (2.3.34)

It contains the Lagrangian density for free nucleons, point-coupling interaction terms, and

the coupling of the proton to the electromagnetic field. Ten density-dependent constant

parameters in this model are listed in Table 2.3, which controls the strength and density

dependence of the interaction Lagrangian. The derivative terms in Eq. 2.3.34 account for

the leading effects of finite range interactions that are crucial for a quantitative description

of the nuclear properties. The total energy-density functional of RMF for the point-

coupling model can be written as

ERMF [ψ, ψ,Aµ] =

∫
d3rH(r), (2.3.35)

where the Hamiltonian density H(r) can be obtained from the Lagrangian density.

The functional form of the couplings is given by

αi(ρ) = ai + (bi + cix)e−dix, (i ≡ S, V, TV ), (2.3.36)

with x = ρ/ρsat, where ρsat denotes the nucleon density at saturation in symmetric nuclear

matter.

2.3.3 RHB theory with a Pairing interaction

Pairing correlations are important to consider for a quantitative description of open-

shell nuclei. The RHB model represents a relativistic extension of the conventional
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Table 2.3: The parameter sets of DD-PC1.

M=939.00

as(fm
2)=-10.04616 bs(fm

2)=-9.15042 cs(fm
2)=-6.42729 ds=1.37235

av(fm
2)=5.91946 bv(fm

2)=8.86370 dv=0.65835 bTV (fm2)=1.83595

dTV =0.64025 δs(fm
4)=-0.8149

Hartree-Bogoliubov framework in which mean-field and pairing correlations are treated

self-consistently [110]. The RHB model gives a unified description of particle-hole (ph)

and particle-particle (pp) correlations on a mean-field level by using the average self-

consistent mean-field potential that encloses the long-range ph correlations and a pairing

field potential which sums up the pp correlations. The density matrix in the presence of

pairing is generalized to two densities, the normal density ρ̂, and pairing tensor k̂. The

RHB energy-density functional can be written as

ERHB[ρ̂, k̂] = ERMF [ρ̂] + Epair[k̂]. (2.3.37)

The pairing part of the RHB functional is given by

Epair[k̂] =
1

4

∑
n1n′1

∑
n2n′2

k∗n1n′1
〈n1n

′
1|V PP |n2n

′
2〉kn2n′2

, (2.3.38)

where 〈n1n
′
1|V PP |n2n

′
2〉kn2n′2

are the matrix elements of the two-body pairing interaction

and indices n1, n′1, n2 and n′2 denote quantum numbers that specify the Dirac indices of

the spinor. The pairing interaction is taken in the form

V PP (r1, r2, r
′
1, r
′
2) = −Gδ(R−R′)P (r)P (r′), (2.3.39)

where R = 1√
2
(r1 + r2) and r = 1√

2
(r1 − r2) represent the center of mass and the relative

coordinates, and the form factor P (r) is the Fourier transform of p(k):

P (r) =
1

(4πa2)3/2
e−r

2/2a2 . (2.3.40)

The pairing force has a finite range and, because of the factor δ(R−R′), it preserves the

translational invariance. Finally, the pairing energy in the nuclear ground state is given

by [136]

Epair = −G
∑
N

P ∗NPN . (2.3.41)
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2.4 Reaction cross-section using Glauber model

The Glauber model has been applied to describe heavy ion collision at high energies.

This model provides a quantitative consideration of the geometrical configuration of the

nuclei when they collide. The basic assumption of the Glauber model is a minimal mean

free path, which results in the projectile moving along a straight path along the collision

direction and gives the nucleus-nucleus interaction in terms of interaction between the

constituent nucleons and nuclear density distributions. One of the most important phys-

ical quantities characterizing nuclear reactions is the total reaction cross-section. The

Glauber model can be studied using two types of approaches: the first one is known as

the Optical limit approach, and the second type is the Monte Carlo eikonal approach.

These approaches of the Glauber model are based on standard models that estimate the

nucleus-nucleus interaction in terms of nucleon-nucleon interaction for a given density

distribution of projectile and target nuclear system. Further details of the Glauber model

are provided in the subsections discussed below.

2.4.1 Total reaction cross-section

The well-known Glauber model has been established to reproduce the experimental data

at high energies. However, it fails to reasonably describe collisions induced at relatively low

energies. In such case, the Glauber model is modified to take care of finite range effects

in the profile function and Coulomb-modified trajectories. The details for calculating

reaction cross-sections using the Glauber approach have been given by R.J. Glauber [137].

The standard Glauber form for the total reaction cross-section at high energies is expressed

[19, 138, 139] as:

σR = 2π

∫ ∞
0

−→
b [1− T (

−→
b )]d
−→
b , (2.4.42)

where T (
−→
b ) is the transparency function at the impact parameter

−→
b . The function T (

−→
b )

is calculated in the overlap region between the projectile and the target, assuming that

the interaction is formed from a single nucleon-nucleon (NN) collision. It is given by [116]:

T (
−→
b ) = exp

[
−
∑
i,j

σi,j

∫
ρpi(
−→s )ρtj(|

−→
b −−→s |)d−→s

]
. (2.4.43)

Here the summation is over the nucleons i and j, where i belongs to the projectile and

j belongs to the target nuclei. The subscripts p and t refer to the projectile and the

target, respectively. σi,j is the experimental nucleon-nucleon reaction cross-section which
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depends on the energy.

This Glauber model agrees well with the experimental data at high energies but fails

to accurately describe collisions induced at relatively low energies. This disagreement

arises due to the presence of the Coulomb repulsive potential, whose effects are evident

in the low-energy range. At low energies, the Coulomb effect violates the characteristic

Glauber assumption that the projectile moves in a straight path along the collision di-

rection and gives the nucleus-nucleus interaction. Various attempts have been made to

include the Coulomb effect in the Glauber model. The most successful model is based on

the WKB approximation for the phase shifts. The impact parameter
−→
b replaces in the

transparency function T (
−→
b ) by the distance

−→
bc of the closest approach of the deviated

projectile trajectory due to the Coulomb effect. The argument of T (b) in Eq. 2.4.43 is

(|
−→
b −−→s |), which stands for the impact parameter between the ith and jth nucleons. The

Glauber model is designed for high-energy approximation. However, it was found to work

fairly well, for both the nucleus-nucleus reaction cross-sections and the differential elastic

scattering cross-sections, over a broad energy range [140, 141]. Thus, for the finite range

approximation, the transparency function is given by [142, 143]

T (b) = exp

[
−
∫
p,t

∑
i,j

[Γij(
−→
b −−→s +

−→
t )]ρpi(

−→
t )ρtj(

−→s )d−→s d−→t

]
, (2.4.44)

where the summation indices i and j run over neutron and proton for both target and

projectile. Here the profile function ΓNN for optical limit approximation is defined as

ΓNN = Γij(beff ) =
1− iαNN
2πβ2

NN

σNNexp(−
b2
eff

2β2
NN

) (2.4.45)

for the finite range and

ΓNN = Γij(beff ) =
1− iαNN

2
σNNδ(b) (2.4.46)

for the zero range with beff=|
−→
b −−→s +

−→
t | ,
−→
b is the impact parameter in which −→s and

−→
t are the dummy variables for integration over the z-integrated target and projectile

densities.

To calculate the total reaction cross-section for unstable nuclei, some phenomenological

parameters are required to estimate the NN cross-section. Here σNN is the total reaction

cross-section of nucleon-nucleon collisions, αNN is the ratio of the real to the imaginary

part of the forward nucleon-nucleon scattering amplitude, and βNN is the slope parameter.

The slope parameter determines the fall of the angular distribution of the nucleon-nucleon
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scattering. These parameters are usually dependent upon the proton-proton, neutron-

neutron and proton-neutron interactions. The nucleon-nucleon cross-section (σNN ) is

estimated by the expression [144, 145, 146]

σNN =
NpNtσnn + ZpZtσpp +NpZtσnp +NtZpσnp

ApAt
, (2.4.47)

where Ap, At, Zp, Zt, Np, Nt are the mass number, charge number and neutron number of

the projectile and the target, respectively. The value of the range parameter βNN as a

function of projectile energy E is given by [147, 148]

βNN = 0.99exp[
−E

106.679
] + 0.089 (2.4.48)

2.4.2 Elastic scattering differential cross-section

One of the advantages of the Glauber theory is that the same input which is used in the

reaction cross-section calculation is readily applicable for the calculation of the differential

cross-section of elastic scattering. The diffraction pattern in the differential cross-section

is expected to depend mainly on the diffuseness of the nuclear surface. Brief details of the

mathematical formalism for calculating differential scattering cross-section are presented

here. The nucleus-nucleus elastic scattering amplitude is written as

F (−→q ) =
iK

2π

∫
dbei

−→q .
−→
b (1− eiχ(

−→
b )). (2.4.49)

At low energies, this model is modified to include a finite range effects in the profile

function and Coulomb-modified trajectories. F (−→q ) and Fcoul(
−→q ) are the elastic and

Coulomb (elastic) scattering amplitudes, respectively. The elastic scattering amplitude

F (q) is written as

F (−→q ) = eiχs

{
Fcoul(

−→q ) +
iK

2π

∫
dbe−i

−→q .
−→
b +2iη ln(Kb)T (

−→
b )

}
(2.4.50)

with the Coulomb elastic scattering amplitude Fcoul(
−→q ) given as

Fcoul(
−→q ) =

−2ηK

q2
exp

[
−2iηln(

q

2K
) + 2i arg Γ(1 + iη)

]
, (2.4.51)

where K is the momentum of the projectile and q is the momentum transferred from the

projectile to the target. Here η= ZpZte2

~ν is the Sommerfeld parameter, ν is the incident

velocity, and χs = −2η ln(2Ka) with a being the screening radius. The elastic scattering
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differential cross-section does not depend on the screening radius a [19, 123]. The elastic

differential cross-section is given by

dσ

dΩ
= |F (−→q )|2 (2.4.52)

and the ratio of the angular elastic to the Rutherford elastic differential cross-section is

given as
dσ

dσ r
=

(dσ/dΩ)

(dσ/dΩ)r
=
|F (−→q )|2

|Fcoul(
−→q )|2

. (2.4.53)

2.5 Reaction cross-section using empirical formula

A large number of empirical formulas (models) with different parameters for total reaction

cross-section calculations have been introduced by several researchers [149, 150, 151, 152,

153, 154, 155, 156, 157, 158, 159, 160, 161]. These models are developed considering the

black sphere model with different modifications added from time to time to reproduce the

experimental data. The available empirical formula has been compiled in Table 2.4. In the

thesis work, we have also calculated the total reaction cross-section using the empirical

formula given by Sihver et al. [153, 154, 156] which is discussed below. The model is

dependent on the interaction radius R and Coulomb barrier B using a strong absorption

model [156]:

σR = πR2

[
1− B

Ecm

]
, (2.5.54)

where R is the interaction radius, Ecm is the center-of-mass energy of the collision and B

is the Coulomb barrier of the projectile-target system:

BShen =
1.44ZPZT e

2

RP +RT + 3.2
− RPRT

RP +RT

,

Ri = 1.12A
1
3
i − 0.94A

− 1
3

i , i = P, T, (2.5.55)

where ZP , ZT , AP , AT , RP , and RT are the atomic numbers, mass numbers, and interac-

tion radius of projectile (P ) and the target (T ), respectively. The interaction radius R is

given by

RShen = 1.1

(
A

1
3
P + A

1
3
T + 1.85

A
1
3
PA

1
3
T

A
1
3
P + A

1
3
T

− C(E)

)

+
5(AT − 2ZT )ZP

APAT
+ 0.176E

− 1
3

cm
A

1
3
PA

1
3
T

A
1
3
P + A

1
3
T

. (2.5.56)
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The energy-dependent transparency coefficient C(E) is

C(E) = 1.91− 16.0e−0.7274E0.3493

cos(0.0849E0.5904), (2.5.57)

where the projectile kinetic energy E is in MeV/nucleon. The calculated reaction cross-

section using the Shen formula shows good agreement with the experimental data in the

high-energy regions.

Table 2.4: List of empirical formulae for reaction cross-section calculations.

interation Models Relation/Value Reference

Nucleus-Nucleus Bradt-Peters σR = πr2
0(A

1
3
P+A

1
3
T − δ)2 [149]

Kox σR = πr2
0(A

1
3
P +A

1
3
T − δ)2(1− BC

Ecm
) [150]

Kox σR = πr2
0(A

1
3
P +A

1
3
T − a

A
1
3
PA

1
3
T

A
1
3
P +A

1
3
T

− C)2(1− BC
Ecm

) [151]

Kox σR = πR2
int(1- BCEcm

) [152, 153]

Townsend σR = πR2
int(1- Bc

Ecm
) , Rint = Rvol +Rsurf [155]

Shen σR = 10πR2
int(1- B

Ecm
) [153, 154]

Sihver σR = πr2
0[A

1
3
P+A

1
3
T − b0(A

−1
3
P +A

−1
3
T )]2 [153, 158]

Tripathi σR = πr2
0(A

1
3
P+A

1
3
T +δE)2(1−Rc B

Ecm
)Xm [153, 157]

Kei Iida σR = π[(aP0 + ∆ap)f
1
2
P + (aT0 + ∆aT )f

1
2
T ]2 [159]

Sihver σR = πR2(1- B
Ecm

) [153, 156]

Proton-Nucleus Sihver σR = πr2
0[1 +A

1
3
T − b0[1 +A

−1
3 ]]2 [158]

Tripathi σR = πr2
0(A

1
3
P+A

1
3
T +δE)2(1− B

Ecm
) [161]

Axen σR = f1(log10Ekin, A).f2(log10Ekin, A).σ0
R) [160]

Kei Iida σR = πa2
0[1 + ( ρ0a0Dnc0

− a0
L0

dL
da |0)−1 ∆σpN

σpN0
]2 [159]

For the proton as the target, we have calculated the total reaction cross-section using

the empirical formula given by Wellisch and Axen [160] in terms of the mass number of

the target A and b0 is the overlap or transparency parameter (see, for details, Ref. [160]):

σ0
R = fcorrπr

2
0lnN [1 + A1/3 − b0(1− A−1/3)], (2.5.58)
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b0 = 2.247− 0.915(1 + A−1/3), and r0 = 1.36fm, (2.5.59)

where N is the number of neutrons in the target.

fcorr =
1 + 0.15e−Ekin

1 + 0.0007A
, (2.5.60)

σR(Axen) = f1(log10Ekin, A).f2(log10Ekin, A).σ0
R. (2.5.61)

The two functions can be written as

f1(x, y) =
1

1 + e−P1(y)(x+P2(y))
(2.5.62)

and

f2(x, y) = 1 + P3(y)

(
1− 1

1 + e−P4(y)(x+P5(y))

)
, (2.5.63)

where x is the log10Ekin in units of MeV and y is the target atomic number.

P1(y) =

(
8− 8

y
− 0.008y

)
, (2.5.64)

P2(y) = 18.72− 42.2

y
− 0.0224y, (2.5.65)

P3(y) = 0.8 +
18

y
− 0.002y, (2.5.66)

P4(y) = 5.6− 0.01y, (2.5.67)

P5(y) = 10.96

(
1 +

1

y

)
. (2.5.68)

2.6 Effective liquid drop model for cluster decay and

two-proton radioactivity

In the present thesis work, the Effective liquid drop model is chosen as fission-like, given

by M. Gonclaves et al. [162, 163, 164]. In this model, the parent nucleus is supposed

to be deformed continuously and reach the saddle or scission shape to undergo cluster

radioactivity. Gamow’s idea of quantum mechanical barrier penetration is still used, but
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Figure 2.1: Shape parametrization of nuclear deformation.

without worrying about the cluster being or not being performed in the parent nucleus.

Here the parent nucleus is assumed to undergo continuous dynamical changes from the

initial one-nucleus system to the final separated multi-nucleus systems, as it penetrates the

nuclear potential barrier and attains the saddle configuration, where both the masses and

charges of the fission fragments are fixed. To describe the molecular stage of the system,

the geometrical configuration of the deformed system is approximated by two intersecting

spheres of different radii. Four independent coordinates are necessary to explain the

configuration in shape parametrization (R1, R2, ζ, and ξ), as illustrated in Fig. 2.1. The

radii of the emitted cluster and heavier daughter nucleus are R1 and R2, respectively. ζ

denotes the distance between their geometric center and the distance between the plane

of intersection and the geometrical center of the daughter nucleus is represented by ξ.

The four-dimensional problem is reduced to one-dimensional by using three constraint

relations in the model. The first one,

2(R3
1 +R3

2) + 3[R2
1(ζ − ξ) +R2

2ξ]− [(ζ − ξ)3 + ξ3] = 4R3
p, (2.6.69)

where Rp is the radius of parent nuclei. The second is the geometrical constraint

R2
1 −R2

2 − (ζ − ξ)2 + ξ2 = 0 (2.6.70)
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The last constraint is connected with the flux of mass through the plain of the intersection

of the two spheroids. The radius of a lighter fragment is constant,

R1 −R1 = 0, (2.6.71)

where R1 is the radius of the light fragment. Now, the four-dimensional problem is re-

duced to one-dimensional.

In ELDM the effective one-dimensional potential energy can be calculated using the re-

lation

V = VC + Vs + Vl. (2.6.72)

Here VC , Vs and Vl are the Coulomb, surface and centrifugal potentials, respectively. The

Coulomb potential (VC) which was developed by Gaudin [165] is given by

VC =
8

9
πa5ε(x1, x2)ρc, (2.6.73)

where ρc is the initial charge density, a is the sharp neck radius and ε(x1, x2) denotes the

function of angular variables x1 and x2,

x1 = π − θ1, (2.6.74)

x2 = θ2 − π. (2.6.75)

which are defined in terms of the angle θ1 and θ2 given in Fig. 2.1.

The effective surface potential Vs can be calculated by

Vs = 4π(R2
p −R2

1 −R2
2)σ(eff), (2.6.76)

where σ(eff) denotes the effective surface tension and Rp denotes the radius of the parent

nucleus.

The centrifugal potential is calculated as

Vl =
~2

2µ

l(l + 1)

ζ2
, (2.6.77)

where µ = (M1M2/M1 +M2) is the reduced mass.

We have used the Shi and Swiatecki [166] hindrance for even-even parent nuclei and,

P is the Gamow penetrability factor for one dimension barrier used in shape parameteri-

zation of the dinuclear system calculated by equation

P = exp

[
−2

~

∫ ζc

ζ0

√
2µ[V (ζ)−Q]dζ

]
. (2.6.78)
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The limits of integration in Eq. 2.6.78 ζ0 and ζc are the inner and outer turning points on

the barrier evaluated by the constraint used to reduce the one-dimensional problems by

introducing ζ0 = Rp−R1 and ζc = Z1Z2e
2/Q. µ is the inertia coefficient. In the µ estima-

tion, two inertial approximations (Werner-Wheeler’s inertial approximation (WW) and

Effective inertial approximation (Eff.)) and two different modes (Varying Mass Asymme-

try Shape (VMAS) and Constant Mass Asymmetry Shape (CMAS)) are used to describe

the dynamical evolution of the separating dinuclear system. So, for µ there are four types

of combinations, which are µVMAS
WW , µVMAS

Eff , µCMAS
WW and, µCMAS

Eff , respectively. Here, the

radius of the parent nuclei is Rp, and the Q value of the reaction is calculated by mass

excess data through RMF (NL3* parameter set) calculations.

The half-life for the cluster decay is given as

T1/2 =

(
ln2

λ

)
, (2.6.79)

where λ is the radioactive decay rate given by

λ = νP. (2.6.80)

In Eq. (2.6.80) ν = (2Eν
h

) is the parameter for assault frequency of the barrier. The

empirical zero point vibration energy Eν is given by [94]

Eν = Q[0.056 + 0.039exp[(4− A2)/2.5]], for A2 ≥ 4. (2.6.81)

The assault frequency was determined using Eq. (2.6.81) for each parent nuclei and emit-

ted cluster combination and was used in Eq. (2.6.80) to determine the half-life values.

2.7 Cluster decay Half-lives using empirical formula

Empirical formulas (models), such as the KPS [167], Royer formula [168], UNIV formula

[169], BKAG formula [170], Ni-Ren-Dong-Xu (NRDX) formula [171], VSS formula [172],

UDL formula [50, 173, 174], Horoi formula [50, 175, 176], Viola-Seaborg-Sobiczewski (VS)

formula [177, 178, 179], and TM formula [180] are commonly used to calculate and predict

the alpha and cluster decay half-lives. In the present thesis, we have also calculated the

half-lives using empirical formula UDL given by C. Qi et al. [50, 173, 174], Viola-Seaborg

formula (VS) [177, 178, 179], the Scaling law of Horoi given by Horoi et al. [50, 175, 176]

and TM formula [180] which is discussed below.
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2.7.1 The Viola-Seaborg formula (VS)

Viola and Seaborg [177, 178] introduced the Viola-Seaborg semi-empirical formula with

different parameters, which is written as

log10T1/2(V S) = (aZP + b)Q−1/2
α + (cZP + d) + hlog, (2.7.82)

where ZP is the atomic number of the parent nucleus. The four parameters a, b, c,

and d are fitting parameters whose values are 1.66175, -8.5166, -0.20228, and -33.9069,

respectively. Here we have chosen the hindrances factor as, hlog = 0 for Z = even, N =

even; hlog = 0.722 for Z = odd, N = even; hlog = 1.066 for Z = even, N = odd; hlog =

1.114 for Z,N = odd.

2.7.2 The Universal Decay Law (UDL)

The Universal Decay Law (UDL) for alpha and cluster decay was introduced by C. Qi

et al. [50, 173, 174] starting from the R-matrix theory [181]. The UDL formula holds

for the monopole radioactive decay of all clusters [173]. The model is dependent on the

mass, charge numbers of the daughter and emitted clusters, and the Q value. The UDL

formula is given by the expression

log10T1/2(UDL) = aZeZd

√
µ

Q
+ b

√
µZeZd(A

1/3
e + A

1/3
d ) + c, (2.7.83)

log10T1/2(UDL) = aχ′ + bρ′ + c. (2.7.84)

The factors χ′ and ρ′ are defined as,

χ′ = ~
e2
√

2m
χ = ZeZd

√
µ
Q
,

ρ′ = ~√
2mR0e2

(ρχ)
1
2 =

√
µZeZd(A

1/3
e + A

1/3
d ),

where µ = AeAd/(Ae + Ad) is the reduced mass and Ae, Ad are the mass numbers of the

daughter and emitted cluster, respectively. The three coefficient sets of Eq. (2.7.84) are a

= 0.3949, b = -0.3693, and c = -23.7615. The term bρ′+ c includes the effects that induce

the clusterization in the parent nucleus.

2.7.3 Scaling law of Horoi et al.

We have calculated the half-life of alpha and cluster decays using the empirical formula

given by M. Horoi et al. [50, 175, 176] in terms of reduced mass µ, and the constants a,
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b, c, and d are the coefficients set (see, for details, Refs. [50, 175, 176]):

log10T1/2(Horoi) = (aµ0.416 + b)[(ZeZd)
(0.613)/

√
Q− 7] + (cµ0.416 + d), (2.7.85)

where T1/2 is the cluster decay half-life and Zd and Ze represent the atomic number of the

daughter and emitted nucleus. The four coefficient sets are a = 9.1, b = -10.2, c = 7.39,

and d = -23.2.

2.7.4 TM formula

The cluster decay half-life is evaluated using the empirical formula given by Tavares et

al. [180] in terms of the proton numbers of the product (daughter and cluster) nuclei and

the calculated Q-value of the two-body disintegration system as

log10T1/2(TM) = (aZC + b)(Zd/Q)1/2 + (cZC + d). (2.7.86)

Here ZC and Zd are the atomic numbers of the emitted cluster and daughter nucleus. The

four parameters a, b, c, and d are 12.8717, -5.1222, -4.6496, and -73.3326, respectively.

2.8 Two-proton decay Half-lives using empirical for-

mula

The two empirical formulas (models), such as Liu [182] and Sreeja [183] formulas, are used

to estimate and predict the two-proton radioactivity half-lives that were lately proposed

by extending the empirical models for one proton radioactivity half-lives founded on the

Geiger-Nuttall law [182, 183]. In the present thesis, we have also estimated the two-

proton radioactivity half-lives using the empirical formula given by Liu and Sreeja which

is discussed below.

2.8.1 Liu formula

The two-proton decay half-lives are evaluated within the empirical formula introduced

by Liu et al. [182] in terms of the daughter nuclei atomic number and the calculated

Q2p-value of the two-body disintegration system as

log10T1/2 = a(Z0.8
d + lb)Q

−1/2
2p + c. (2.8.87)

Here, the adjustable parameters a = 2.032, b = 0.25, and c = −26.832, are obtained by

fitting the experimental value and the estimated results based on the ELDM. Here the
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fitting parameter b reveals the effect of the angular momentum l on the two-proton decay

half-lives.

2.8.2 Sreeja formula

Sreeja and Balasubramaniam [183] introduced Sreeja’s formula, with different parameters

which are given as

log10T1/2 = (al + b)ξ + cl + d. (2.8.88)

where ξ = Z0.8
d Q

−1/2
2p , with Zd being the atomic number of the daughter nucleus. The four

parameters a, b, c, and d are fitting parameters whose values are obtained by fitting the

two proton decay half-lives estimated by the ELDM. These four fitting parameters a, b,

c, and d come out to be 0.1578, 1.9474, -1.8795, and -24.847, respectively.



Chapter 3

A combined Glauber model plus

Relativistic Hartree-Bogoliubov

theory analysis of nuclear reactions

for light and medium mass nuclei
1

3.1 Introduction

Recently, the radioactive ion beam (RIB) facilities and advanced detection technologies

have become a standard tool to study nuclear structure and reaction properties of nu-

clei lying at the drip line (far away from the β stability line). The quantities measured

in various nuclear reactions include the total reaction cross-sections, elastic scattering

differential cross-sections, nucleon removal cross-sections, nuclear and Coulomb breakup

cross-sections, and momentum distributions of fragments in breakup processes on nuclear

targets. These observables have been used to study the nuclear structure of unstable

nuclei in detail, particularly the halo structure near the drip lines [116, 184, 185, 186].

From another side, it has been found quite useful to understand the role of nuclear in-

teraction, especially at proton/neutron drip line, as these reaction characteristics exhibit

many interesting nuclear structural features, such as one/two neutron halo, skin effect,

deformations, bubbleness, and magicity/emergence of new shell gaps [187, 188]. The

measurement of the total reaction and differential cross-sections are particularly useful

1The results discussed in this chapter have been published in Pramana - J. Phys. 96, 8 (2022).

43
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for these unstable nuclei as the effects produced by weekly bound neutron/proton nuclei

are quite different from the nuclear core. For stable nuclei, electron and proton elastic

scattering data provide the charge and matter density distributions, while for unstable

nuclei, not only electron elastic scattering experiments are yet to be performed, but also

proton scattering data obtained from RIBs colliding with a proton target [189, 190] are

scarce. Hence, the deduction of the rms matter radius of unstable nuclei is mainly per-

formed through measurements of reaction cross-section only.

The measurement of reaction cross-sections and matter radii of 6,8He, 11Li, and 11,14Be

[189, 190, 191] has shown anomalously large values compared to that of the neighboring

nuclei. Also, very recently, the measured interaction cross-sections of very neutron-rich

carbon isotopes have 22C deduced to be two-neutron halo nucleus (the 21C nucleus is

unstable) [192, 193, 194]. The momentum distribution and the one-neutron removal

cross-section have also shown that 22C is a halo nucleus and N = 16 is considered to be a

new magic number in neutron-rich nuclei [195]. The observation of such nuclear halo and

other novel features are closely connected with the evolution of the shell structure in He,

Li, Be, B, and C isotopes. These investigations have stimulated several theoretical studies

in the past [196, 197], yet it needs further refinement to reduce the theoretical uncertainty

and to constrain the theoretical approaches. These are the arguments that motivate us to

study the nuclear reaction cross-sections of such nuclei consistently with nuclear structure

details. For these calculations, realistic nuclear density is required, which can be obtained

from a certain number of nuclear models. Hence, it is very important to choose a suit-

able set of density/wave functions before employing them for further calculations. We

have used the relativistic Hartree-Bogoliubov (RHB) model for calculating the ground-

state properties of nuclei considered in the present chapter. Cross-section studies have

been performed using the Glauber model which can account for the breakup effect of

the weakly bound nucleus [198, 199]. The Glauber model has been successfully applied

to study high-energy nucleus-nucleus reaction cross-section data. The model is based

on the eikonal approximation which exhibits complex behavior as compared to nucleon-

nucleon interaction [5, 7]. The main input to obtain the reaction cross-sections through

the Glauber model is the structural information of the nuclei involved, which is provided

through the density profile. The Glauber model predicts the values of the total reaction

cross-sections at higher energies much closer to the experimental data. In our previous

studies, we have shown that the density obtained from the relativistic mean field can be

used effectively for reaction studies [129, 200, 201].

In this chapter, we have calculated the nuclear reaction properties of even-even 4−8He,
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6−10Li, 10−14Be, 8−16B, 10−22C, 40Ca, 58Ni, 90Zr, and 120Sn nuclei extending from the proton

to the neutron drip line. The evaluation of the credibility of the nuclear densities used

as inputs for reaction studies has been performed by comparing the nuclear ground-state

properties, i.e. the binding energies and charge radii, with the corresponding experimental

values. The ground-state properties of the considered nuclei are calculated using the rel-

ativistic Hartree-Bogoliubov model with density-dependent meson exchange (DD-ME2)

and point coupling (DD-PC1) interactions and with separable pairing interaction. The

nuclear reaction cross-section for light nuclei, such as He, Li, Be, B, and C isotopes, as

the projectile on the 12C target are calculated using the Glauber model, with densities

obtained from RHB formalism. We have also calculated the reaction cross-section in

medium mass nuclei, namely Ca, Ni, Zr, and Sn isotopes, on the proton target. The elas-

tic scattering differential cross-sections are also analyzed for various projectile energies.

They give different types of diffraction patterns that depend on the diffuseness of the

nuclear surface.

3.2 Results and Discussion

This section presents our calculated results of binding energies, charge radius (rch), and

nuclear density for isotopes of He, Li, Be, B, C, Ca, Ni, Zr, and Sn using the relativis-

tic Hartree-Bogoliubov theoretical model with DD-ME2 (meson-exchange coupling) and

DD-PC1 (point coupling) parameter sets. The calculated results are compared with ex-

perimental data.

3.2.1 Binding energies, nuclear radii, and density profiles

The calculated binding energies for the considered nuclei along with the experimental

values taken from ref. [202] are presented in Table 3.1. It can be seen from Table 3.1

that the calculated binding energies from the RHB formalism are in good agreement with

available experimental data [202, 203]. In comparison, the DD-PC1 values of the binding

energies are slightly higher than the DD-ME2 values and overestimate the experimental

data. For the results given in Table 3.1, the square-weighted mean square error with

respect to the experimental data is 0.0010 and 0.0011 for DD-ME2 and DD-PC1 parameter

sets, respectively. The binding energy of a nucleus indicates nuclear stability, as well as

protons and neutrons decay energies. These results give the confidence to use DD-ME2

and DD-PC1 densities in the calculation of reaction dynamics.

The charge radius (rch) is obtained from the point proton rms radius through the relation
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Table 3.1: The calculated values of binding energy (in MeV) and charge radius (rch in

fm) for the projectile and target nuclei using RHB (DD-ME2 and DD-PC1) formalism

and comparison with experimental data [202, 203].

Nucleus Binding energy Charge radius (rch)

DD-ME2 DD-PC1 Expt. DD-ME2 DD-PC1 Expt.
4He 27.818 26.902 28.292 2.140 2.177 1.676
6He 28.979 29.321 29.270 2.118 2.131 2.068
8He 29.626 31.514 31.41 2.124 2.126 1.929
6Li 32.470 32.385 31.994 2.431 2.408 2.539
8Li 42.155 43.042 41.277 2.336 2.331 2.29
10Li 47.669 49.765 45.316 2.342 2.337 -
10Be 61.444 62.191 64.970 2.394 2.420 2.36
12Be 68.916 71.096 68.649 2.461 2.461 -
14Be 66.628 68.185 69.916 2.489 2.488 -

8B 37.865 38.744 37.737 2.725 2.666 -
10B 63.382 64.039 64.751 2.523 2.532 2.428
12B 81.517 82.641 79.575 2.496 2.516 -
14B 87.826 89.425 85.423 2.535 2.545 -
16B 88.076 90.012 88.144 2.566 2.569 -
10C 55.923 56.860 60.321 2.669 2.661 -
12C 87.317 87.517 92.160 2.507 2.552 2.47
14C 104.921 105.766 105.280 2.556 2.585 2.56
16C 108.544 109.970 110.752 2.585 2.607 -
18C 111.792 113.945 115.280 2.612 2.628 -
20C 114.573 117.580 119.18 2.636 2.649 -
22C 116.652 120.562 120.736 2.653 2.663 -

40Ca 342.778 344.791 342.120 3.475 3.457 3.476
58Ni 501.634 501.916 506.459 3.752 3.775 3.774
90Zr 783.195 785.273 783.898 4.268 4.267 4.272

120Sn 1019.399 1020.894 1020.539 4.645 4.645 4.652
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given below [10]:

rc =
√
r2
p + 0.64 , (3.2.1)

where the proton radius is considered to be 0.8 fm. In Table 3.1, we have presented the

calculated values of charge radius using RHB (DD-ME2 and DD-PC1) formalism along

with the experimental data, wherever available [204]. It is found that the calculated values

of the charge radius agree well with the experimental ones. For instance, the obtained

values of rch for 12C with DD-ME2 and DD-PC1 are 2.507 and 2.552 fm, respectively, and

they compare well with the measured value of 2.47 fm. As can be seen, the calculated

values of charge radii are slightly higher for DD-PC1 than for the DD-ME2 parameter set.

For the results given in Table 3.1, the square-weighted mean square errors with respect to

the experimental data are 0.0036 and 0.0043 for DD-ME2 and DD-PC1 parameter sets,

respectively. Since the charge radius is obtained from the density profile, our RHB results

for charge radii match well with the experimental results. We have used these densities

to find coefficients ci and ranges ai for reaction cross-section calculations.

To check the reliability of the calculated total nuclear densities, we have compared the
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Figure 3.1: Comparison of charge densities ρch obtained from RHB (DD-ME2 and DD-

PC1) calculations for 40Ca (shown in 1(a)) and 90Zr (shown in 1(b)). Experimental data

[205, 206] are also given for comparison.

calculated charge densities with the available experimental data (for 40Ca and 90Zr), as

shown in Fig 3.1. Fig 3.1 represents the densities of 40Ca and 90Zr as a function of radial

distance r. In Fig 3.1(a), the nuclear charge densities with and without Gaussian fitting

are illustrated. It is clear from Fig 3.1(a) that the densities calculated with DD-ME2 and
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DD-PC1 compare well with the experimental data [205, 206] and are almost similar except

for a small difference at the center. In the nucleus, the nucleon density distribution in the

central region reaches a maximum and starts decreasing towards the surface. Similarly,

we have calculated the densities for 90Zr using DD-ME2 and DD-PC1 parameters and

plotted in Fig 3.1(b). In case of 40Ca, the densities obtained using both DD-PC1 and

DD-ME2 both overestimate slightly the experimental density at the center, whereas in

the case of 90Zr, the results show almost one-to-one match with the experimental charge

density. We have observed that RHB nuclear densities and nuclear densities fitted by a

sum of Gaussian functions are quite similar. However, to calculate the nuclear reaction

cross-section, we require a sum of Gaussian for the total nuclear densities, and hence the

coefficient for the same (ai, ci ) are given in Table 3.2 for both DD-ME2 and DD-PC1

parameter sets.

The nuclear densities obtained from the RHB calculations are fitted to a sum of Gaussian

functions, with suitable coefficients ci and ranges ai chosen for the respective nuclei which

are expressed as

ρ(r) =
N∑
i=1

ciexp[−air2] (3.2.2)

Then, the Glauber model is used to calculate the total reaction cross-section for both the

stable and unstable nuclei considered in the present study.

3.2.2 Total reaction cross-section

One of the main inputs for calculating of reaction cross-section from the Glauber model

is the densities of the projectile and the target. We calculate the total nuclear reaction

cross-sections for even-even light mass nuclei (as a projectile) on 12C target using the

well-known Glauber model for incident energy 30-1100 MeV/nucleon and compared with

the experimental data [184, 207, 208, 209].

Fig 3.2 shows the variation of the total reaction cross-section for 12C projectile on 12C

target with experimental data [199, 208, 209]. It can be seen from Fig 3.2 that the DD-

ME2 results match well for all E, particularly at higher values. At low energies, the

Coulomb effect breaks the characteristic Glauber assumption that the projectile moves in

a straight path along the collision direction and gives the nucleus-nucleus interaction. The

theoretically calculated total reaction cross-section using the Shen formula is also given

in Fig 3.2 for comparison. At high projectile energy σr is almost constant but in the low

energy region σr decreases with energy. The results obtained with DD-ME2 and DD-PC1
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Table 3.2: The Gaussian coefficients c1, c2 (in fm−3), and ranges a1, a2 (in fm−2) for the

projectile and the target nuclei using RHB (DD-ME2 and DD-PC1) densities.

Nucleus DD-ME2 DD-PC1

c1 a1 c2 a2 c1 a1 c2 a2

4He -1.21074 0.430376 1.40447 0.430362 -1.18094 0.518707 1.33754 0.493431
6He -1.21274 0.338221 1.40269 0.338139 -1.22195 0.406079 1.38382 0.387125
8He -1.21473 0.277103 1.40067 0.277053 -0.0344762 0.668599 0.198228 0.266596
6Li -1.21111 0.331916 1.40443 0.331834 -1.22467 0.418282 1.38844 0.3959
8Li -0.954186 0.317045 1.15509 0.216906 -1.22505 0.382127 1.39652 0.355307
10Li -0.0280104 0.746477 0.215441 0.24405 -1.22875 0.345937 1.39616 0.317875
10Be -0.715954 0.399514 0.932236 0.35115 -2.55755 0.364366 2.74063 0.346752
12Be -0.144797 0.524765 0.322591 0.255807 -2.95383 0.32823 3.12016 0.312574
14Be -0.029346 0.884583 0.225294 0.206446 -0.34928 0.338282 0.518984 0.248758

8B -0.90949 0.280753 1.10632 0.278896 -1.22359 0.377247 1.39324 0.351645
10B -0.115597 0.560674 0.328971 0.295178 -2.7156 0.365758 2.89883 0.348638
12B -0.238443 0.500846 0.436427 0.289529 -1.42745 0.353198 1.60728 0.317607
14B -0.155061 0.53503 0.342766 0.243962 -1.45564 0.322088 1.62735 0.289066
16B -0.0727572 0.625991 0.267665 0.203858 -2.74612 0.282948 2.91882 0.267825
10C -0.0714023 0.630206 0.282435 0.279806 -2.42795 0.360827 2.60865 0.342949
12C -0.252934 0.559829 0.477824 0.312322 -3.57555 0.358487 3.7741 0.342315
14C -1.11983 0.397884 1.30388 0.328356 -1.78721 0.339177 1.96548 0.306
16C -0.220029 0.494813 0.40971 0.242021 -4.06649 0.29889 4.24279 0.28573
18C -0.148886 0.502663 0.342854 0.210082 -1.65748 0.282132 1.83413 0.254483
20C -0.128874 0.470349 0.324278 0.191071 -1.59376 0.259582 1.7731 0.234468
22C -0.145042 0.407697 0.340242 0.182128 -1.45633 0.240223 1.64281 0.216755

40Ca -2.20954 0.182730 2.50586 0.168420 -2.19931 0.172717 2.4568 0.159720
58Ni -3.01691 0.15353 3.26215 0.1424370 -2.98792 0.149701 3.19114 0.138475
90Zr -3.39482 0.131204 3.50470 0.121798 -3.30983 0.123187 3.41661 0.114503

120Sn -3.50362 0.115378 3.67986 0.1044921 -3.49871 0.110147 3.57124 0.099754

densities are in good agreement with the experimental data. Also, we have presented the

values of the reaction cross-section obtained from the RMF approach using non-linear

terms (NL3) parametrization [123] in Fig 3.2. As one can see in this figure, the results of

the reaction cross-section with RHB (DD-ME2) densities appear slightly better than the

ones obtained with RMF (NL3) model.

In Fig 3.3, we present the total reaction cross-sections for 4−8He, 6−10Li, 10−14Be, and
8−16B nuclei on 12C performing calculations with DD-ME2 and DD-PC1 at fixed E=790
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Figure 3.2: The total nuclear reaction cross-sections σr for 12C+12C system at different

incident energies. The results obtained from DD-ME2, DD-PC1 densities, RMF (NL3)

value [123] and Shen formula are compared with the available experimental data [208, 209].
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Figure 3.3: The comparison of total reaction cross-sections at 790 MeV/nucleon for various

projectiles (He, Li, Be, and B isotopes) on 12C target. Experimental data [208, 209, 199]

are also given for comparison.

MeV/nucleon and make a comparison with experimental data [199, 208, 209]. In addition,



3.2. Results and Discussion 51

we also calculate the total reaction cross-section using the Shen formula. A similar trend is

observed for all calculations on different projectiles. Also, the total reaction cross-sections

obtained from the DD-ME2 densities agree well with the experimental data.

Fig 3.4 shows the variation of total reaction cross-section for 10,14,16,18,20,22C on 12C target
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Figure 3.4: Energy dependence of the total nuclear reaction cross-sections σr for
10,14,16,18,20,22C as projectiles on 12C target. The results obtained from DD-ME2 and

DD-PC1 densities and the Shen formula are compared with the available experimental

data [187, 208, 209].

as a function of the projectile energy in the energy range of 30-1100 MeV/nucleon and

experimental results are also given for comparison [199, 208, 209, 210]. The total reaction

cross-section is higher at lower incident E (30-200 MeV/nucleon) and starts decreasing

with the increase of E (400 MeV/nucleon). A small increment in σr appears at about

500-800 MeV/nucleon and after that it is constant. The calculated results using the Shen

formula at high energy are also constant. We have seen that the total reaction cross-

section σr also increases with the increase of the projectile mass. For example, the total

reaction cross-section for 16C is higher than the σr for 14C with fixed 12C target. This

increase in σr may be related to the geometrical area πR2. The sharp decrease in σr with
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increasing projectile energy up to 400 MeV/nucleon at which point π production causes

the total cross-section to rise [211]. This remarkable dip in the total reaction cross-section

can be attributed to the behaviour of the scattering phase shift.

The total reaction cross-section for an unstable+unstable projectile-target system is one

of the main challenges in experimental nuclear physics. Such measurements give a better

understanding of some of the cosmological phenomena such as supernovae, X-ray bursts,

and in the r-process nucleosynthesis. In recent years, considerable efforts are underway

at various laboratories to look for RIB+RIB cross-sections. To study the total reaction

cross-section for the RIB+RIB system, we select 8Li+8Li, 14Be+14Be, and 8B+8B systems

and the results are presented in Fig 3.5. In the figure, the variation of the total reaction

cross-section using the densities from DD-ME2 and DD-PC1 parameter sets with various

incident energies is shown. We found that the value of σr with DD-ME2 is a little bit

higher than with the DD-PC1.

The total reaction cross-sections for medium mass nuclei of 40Ca, 58Ni, 90Zr, and 120Sn
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Figure 3.5: The total reaction cross-sections for 8Li+8Li, 14Be+14Be and 18B+18B systems

using RHB densities with different energies.

as projectiles on proton target are shown in Fig 3.6. The experimental data are also

given for comparison [212]. It is clear from Fig 3.6 that the calculated value of the

total reaction cross-section is higher at small incident energy and starts decreasing up

to 400 MeV/nucleon. σr increases in the range of 800 MeV/nucleon and after that,

it remains constant. We also calculate the total reaction cross-section using the Axen
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formula and compare it with experimental data [212, 213, 214]. A similar trend is observed

for all calculations on different projectiles. The total reaction cross-sections obtained
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Figure 3.6: The comparison of total reaction cross-sections at different incident energies

for 40Ca, 58Ni, 90Zr, and 120Sn as projectiles on proton target. Experimental data [212,

213, 214] are also given for comparison.

from the DD-PC1 densities are slightly higher than the ones obtained from the DD-ME2

densities. Also, the total reaction cross-section obtained from the DD-ME2 density agrees

well with the experimental values. In low-energy regions, the experimental cross-section

overestimates the theoretically obtained cross-sections.

3.2.3 Differential elastic scattering cross-section

We present numerical results for the elastic scattering differential cross-sections [eq. (2.4.53)]

and compare them with the available experimental results to study how precisely our

estimates for the nuclear size lie within the Glauber theory. We start with the calcula-

tion of the differential cross-section for 12C+12C system at incident energies 30 and 85

MeV/nucleon incident energies as presented in Fig 3.7. The comparison between our

theoretical calculations and experimental data shows that calculated values agree well

with the experimental data [123, 207], which suggests that the parameters of the NN

scattering amplitude are well determined. At low angle region, both differential scatter-
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ing cross-sections (DD-ME2 and DD-PC1) are similar to each other and show oscillatory

structure, while at higher angle region, the cross-sections deviate slightly from the ex-

perimental data, but the nature of the curve is similar. In general, the results obtained
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Figure 3.7: Comparison of elastic scattering differential cross-sections for 12C+12C system

at 30 and 85 MeV/nucleon energies with experimental data. The experimental data are

taken from reference [123, 207].

from DD-ME2 and DD-PC1 are similar and give excellent agreement in overall energy

ranges. At high scattering angles, the calculated values of elastic scattering differential

cross-sections overestimate the experimental data for 12C+12C system. Fig 3.7 also shows

the comparison of results obtained in the present work with the results using the RMF

(NL3) model [123] for 12C+12C system at 30 and 85 MeV/nucleon incident energies. The

calculated values in the present work are slightly underestimated whereas the results ob-

tained using RMF (NL3) are slightly overestimated at low-angle regions. At large angles,

both approaches show a similar trend in comparison to the experimental data but fail to

have a one-to-one correspondence with experimental results.

Fig 3.8 shows the differential cross-section for 6He+12C at 38.3 and 41.6 MeV/nucleon

incident energies using RHB (DD-ME2 and DD-PC1) densities along with the experimen-

tal data [215, 216]. From Fig 3.8 we conclude that the RHB densities produce remarkable

agreement of differential elastic cross-section with the experimental data. The role of

realistic density for the two-neutron halo nucleus 6He is confirmed in ref. [217], where the

same experimental data have been analyzed using microscopic optical potentials obtained

by a double-folding procedure and high-energy approximation. In this approach, the mi-
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Figure 3.8: Elastic scattering differential cross-section for 6He projectile on 12C target: (a)

at an incident energy of 38.3 MeV/nucleon; (b) at an incident energy of 41.6 MeV/nucleon.

The experimental data are taken from reference [215, 216].

croscopic densities of protons and neutrons in 6He were calculated within the large-scale

shell model. In general, it is seen from Fig 3.8 that the experimental data are higher than

differential elastic scattering cross-sections for RHB densities at high scattering angles.

Figure 3.9 presents our calculated value of the differential cross-section for the 14Be+12C
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Figure 3.9: Elastic scattering differential cross-sections for 14Be projectile on 12C target at

different energies as a function of scattering angle using the RHB (DD-ME2 and DD-PC1)

formalism.
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system at energies of 30, 85, 200, and 500 MeV/nucleon energies, respectively, using the

DD-ME2 and DD-PC1 densities. From Fig 3.9 we can see that the calculated results for

RHB (DD-ME2 and DD-PC1) formalism using the Glauber model are almost identical

and show large variation with incident projectile energy. The DD-ME2 and DD-PC1 cal-

culations produce a small difference up to the first minimum. The oscillatory structure of

the elastic scattering differential cross-section at a low scattering angle increases with the

increase of incident projectile energy. It is found that the diffraction pattern decreases

with the increase of the scattering angle and disappears at high scattering angles. In the

low scattering angle region DD-ME2 and DD-PC1 densities give similar patterns. Over-

all, this analysis also confirms that the elastic scattering cross-section is well reproduced

using the correct wave function together with the profile function used in this study.

3.3 Conclusions

In summary, we have discussed bulk properties like binding energy and charge radius for

light mass nuclei using RHB (DD-ME2 and DD-PC1) formalism. Our theoretical results

show a good agreement with the available experimental data. In general, the calculated

value of total reaction cross-section σr using DD-ME2 densities are better than the result

obtained by using DD-PC1 densities. We have shown that the calculated values of σr

are in good agreement with the experimental data. σr decreases with the increase of the

projectile energy E and σr is almost constant at high energy, as observed experimentally

too. It has been also found that the total reaction cross-section increases with the increase

of the projectile mass. The analysis of the differential scattering cross-section shows a

clear diffraction pattern in which the magnitude of separation is large at a small scattering

angle and the oscillation keeps on decreasing with an increase in scattering angles, as well

as incident energy. It is pertinent to mention that in the present work, the nuclear

deformation has not been considered explicitly even though it affects the reaction cross-

section. Even for large deformation |β2|∼0.2, it amounts to a variation of about 2 % only

[159]. Thus, we can conclude that the combined effect of deformation and rotation is

significantly smaller than the effect of large neutron excess which is largely embedded in

the density profile. Hence, employing reliable density distribution in conjunction with the

Glauber model leads to a satisfactory description of the total reaction cross-section and

elastic scattering differential cross-section over a wide energy range.



Chapter 4

Cluster decay half-lives in trans-tin

and transition metal region
1

4.1 Introduction

Cluster radioactivity was first predicted in 1980 by Sandulescu, Poenaru, and Greiner

[24] on the basis of fragmentation theory, where cold reaction (fusion or fission) valleys

are generated by the shell closure effects of one both the reaction partners [218]. In this

new type of exotic radioactive decay, i.e., the cluster radioactivity process, the parent

nuclei emit a particle heavier than the alpha particle and lighter than the lightest fission

fragments [101, 219]. The first experimental signature of cluster radioactivity was observed

via the spontaneous emission of 14C cluster from the decay of 223Ra by Rose and Jones

[52]. Subsequently, cluster decay has been experimentally observed in different nuclei

of the trans-lead region (Z=87-96), namely for the cluster decay of 14C, 18,20O, 23F,
22,24,26Ne, 28,30Mg, and 32,34Si [71, 91, 220]. In this region (Z=87-96) all cluster emissions

have a doubly magic nucleus of 208Pb (Z=82, N=126) or its neighboring nuclei as the

daughter nuclei. In the recent past, two new islands of emission of clusters have been

predicted by several theoretical models, first in the superheavy nuclei (SHN) region and

second in the trans-tin region (Z=56-64) [221, 222, 223]. For the parent nuclei lying in

the trans-tin region (Z=56-64), it has been predicted that daughter nuclei lie close to

doubly magic nuclei 100Sn (Z=50, N=50) [224, 225]. It is important to note that the

1The results discussed in this chapter have been published in J. Phys. G: Nucl. Part. Phys., 49,

025101 (2021).
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first experimental observation of cluster decay from the trans-tin region has been already

confirmed by Oganessian et al. [56] at Dubna (Russia) and by Guglielmetti et al. [226]

at GSI (Germany) in 1995. So far about 20 potential cluster emitters have been observed

experimentally [227].

Cluster radioactivity is theoretically understood in a similar approach to the Gamow

model of alpha decay based on the quantum tunneling effect. However, the description can

be mainly classified into two types of approaches. The first one is known as the Preformed

cluster model, it is assumed that the clusters made of several nucleons are performed in

the parent nucleus before they could tunnel through the barrier created by the nuclear

and Coulomb potentials [104, 105, 106]. The exponential dependence of the calculated

tunneling probability thus calculated leads to a modified Geiger-Nutall law of cluster

radioactivity of the particular cluster emission, relating half-lives for CR to the Q value

of the reaction. However, in the second type of theoretical approach, namely the fission-

based model [108], the parent nucleus is assumed to be deformed continuously and reach

the saddle or scission shape to undergo cluster radioactivity [36, 94, 107]. In such type of

fission model-based approach, Gamow’s idea of quantum mechanical barrier penetration

is still used, but without worrying about the cluster being or not being performed in the

parent nucleus. Here the parent nucleus is assumed to undergo continuous dynamical

changes from the initial one-nucleus system to the final separated multi-nucleus systems,

as it penetrates the nuclear potential barrier and attains the saddle configuration, where

both the masses and charges of the fission fragments are fixed. In this approach, the shape

parametrization is chosen as fission-like, where the decaying system is considered as two

intersecting spheres of different radii which are used to describe the decaying fragments.

On the same lines, the Effective Liquid Drop Model (ELDM) developed by Goncalves and

Duarte [162, 163, 164] is a successful model for calculating alpha decay, proton emission,

and cluster radioactivity in a unified framework and has been used extensively for studying

cluster radioactivity [228]. Microscopic calculations for the cluster radioactivity half-life

predictions are thus model dependent as different microscopic/phenomenological nuclear

models are used to calculate mass defect and the Q-value of the reaction with separate

calculations for cluster emission probability. In addition, to reduce the model dependence

and consider the Q value dependence, several analytic formulas have been introduced by

fitting Q values and experimentally observed half-lives of cluster radioactivity processes.

In 1993, Gupta et al. [30] first predicted the instability of ‘stable’ nuclei in the region

50 < Z < 82 against exotic cluster decay using preformed cluster model. Based on

analytic super asymmetric fission model [29] and preformed cluster model [31], half-life
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for proton-rich nuclei (Z=56-64 andN=58-72) was calculated for cluster emissions ranging

from 4He to 28Si. This region thus provided another very interesting CR case as daughter

nuclei in the decay are found to doubly magic daughter nuclei 100Sn (Z=50, N=50) or

neighboring near-doubly magic nuclei. The calculated half-life for CR in this region is

lower than the upper limit of measurement(T1/2 < 1030s). In recent years, the half-lives

of cluster decay from 8Be to 32Si have been evaluated using different models for several

nuclei in the different mass regions including the nuclei which are far from the β stability

line either side [229, 230, 231, 232]. Very recently, Santhosh et al. [233, 234] have studied

the cluster radioactivity of the trans-lead region by employing different models. In these

studies, it has been shown that the cluster radioactivity of these nuclei is dependent on

the models used. The CR nuclei in the transition metal region 72 6 Z 6 80 exotic

decay have not been confirmed experimentally yet. The confirmed cluster decay is found

corresponding to the doubly magic daughter nuclei or its neighboring magic nuclei.

In this chapter, we have used the Effective Liquid Drop Model (ELDM) to determine the

cluster decay half-lives, using mass excess data calculated from the relativistic mean-field

model (NL3* parameter set) and test its accuracy and predicted ability. In the present

work, we have calculated the binding energy per nucleon (B.E./A) of various isotopes

of even-even parent nuclei (Xe, Ba, Ce, Nd, Hf, W, Os, Pt, and Hg), daughter nuclei,

and emitted clusters (8Be, 12C, 16O, 20Ne and 24Mg) using RMF (NL3* parameter set)

model. The mass excess data (∆M) for cluster decay is evaluated by making use of these

binding energy per nucleon. This mass excess data (∆M) has been used further, as input

to obtain a Q value and determine the cluster decay half-lives with the ELDM. Further,

to check the reliability, prediction ability, and model dependence of these calculations, we

have compared our results with the available experimental results and other theoretical

calculations including the ones that use the empirical formula Universal Decay Law (UDL)

and the Scaling Law by Horoi et al.. Also, the Geiger-Nuttall plots of Q(−1/2) versus

log10T1/2 for emission of 8Be, 12C, 16O, 20Ne, and 24Mg clusters for various isotopes of

parent nuclei have been analyzed.

4.2 Results and Discussions

In this chapter, we have studied the cluster decay half-lives (log10T1/2) from various iso-

topes of even-even parent nuclei (Xe, Ba, Ce, Nd, Hf, W, Os, Pt, and Hg) for the emission

of alpha-like (8Be, 12C, 16O, 20Ne, and 24Mg ) clusters and half-lives of the non-alpha-like

(22Ne and 26Mg) CR are also calculated for W and Nd isotopes. The mass defect and
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Q values needed for cluster decay half-lives determination is calculated using the RMF

model with NL3* parameter [111, 115]. Further, the calculation of cluster decay half-lives

have been done using the Effective Liquid Drop Model (ELDM) [162, 163, 164]. In the

ELDM, there are two inertial coefficients (Warner-Wheeler inertial coefficient and Effec-

tive inertial coefficient) used and two different modes (Varying Mass Asymmetry Shape

(VMAS) and Constant Mass Asymmetry Shape (CMAS)) of cluster decay. We used a

combination of the Varying mass Asymmetry Shape and Werner-Wheeler’s inertia in the

ELDM. It is to be noted here that all cluster decay half-lives calculations in ELDM have

been performed here by using zero angular momenta. In the binding energy per nucleon

calculation, we have used the oscillator shell NF=NB=20 for fermions and bosons.

At first, we calculate the binding energy per nucleon of various isotopes of parent nuclei,

then find mass excess data, Q values, penetrability, decay constant, and clusters decay

half-lives. We have determined the mass excess data (∆M) by using the binding energy

per nucleon in RMF (NL3* parameter set). The relation between binding energy per

nucleon and mass excess data is given by

Mass of the Nuclei = ((N*Mn +Z*Mp)*931.5 - A*B.E./A)/931.5 u

∆M = ( Mass of the Nuclei - Mass No. of Nuclei)*931.5 MeV

Namely in the calculations of Q values and cluster decay half-lives, we use these mass

excess data following the main purpose of the present study. To calculate the Q-value,

we used mass excess data of RMF (NL3*) and finite-range-droplet model (FRDM). The

following relation is given by,
8Be :

QBe(N,Z) = ∆Mp(N,Z)−∆Md(N − 4, Z − 4)−∆Me(4, 4) (4.2.1)

12C :

QC(N,Z) = ∆Mp(N,Z)−∆Md(N − 6, Z − 6)−∆Me(6, 6) (4.2.2)

16O :

QO(N,Z) = ∆Mp(N,Z)−∆Md(N − 8, Z − 8)−∆Me(8, 8) (4.2.3)

20Ne :

QNe(N,Z) = ∆Mp(N,Z)−∆Md(N − 10, Z − 10)−∆Me(10, 10) (4.2.4)

24Mg :

QMg(N,Z) = ∆Mp(N,Z)−∆Md(N − 12, Z − 12)−∆Me(12, 12) (4.2.5)
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Here ∆Mp(N,Z) is the mass excess of the parent nucleus in MeV, ∆Md(N − 4, Z − 4),

∆Md(N − 6, Z − 6), ∆Md(N − 8, Z − 8), ∆Md(N − 10, Z − 10) and ∆Md(N − 12, Z −
12) are the mass excess of the daughter nuclei and ∆Me(4, 4), ∆Me(6, 6), ∆Me(8, 8),

∆Me(10, 10) and ∆Me(12, 12) are the mass excess of the clusters 8Be, 12C, 16O, 20Ne and
24Mg, respectively. The FRDM mass excess data are taken from reference [235]. The

positive Q value (Q > 0) for all possible combinations (parent and cluster) have been

considered.

In this chapter, we have compared the prediction ability of different approaches used for
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Figure 4.1: The Q values for the alpha-like clusters (12C and 16O) decay from Ba iso-

topes using RMF formalism with NL3* parameter set, compared with the FRDM and

experimental data, wherever available.

cluster decay half-lives. For this, we have compared the results obtained by the ELDM

model with the results obtained by the empirical formula, namely the UDL empirical

formula and Scaling Law by Horoi et al.. Further, to compare the impact of the difference

in Q value, we have also compared calculated half-lives using ELDM by two sets of Q-

values obtained from RMF calculations, as well as from FRDM data.
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Table 4.1: The Q-value, penetrability P , decay constant, and decay half-lives (log10T1/2 (s)) for the decay of alpha-like cluster (
8Be, 12C, 16O, and 20Ne ) from even-even parent nuclei in the trans-tin region.

Parent

nuclei

Daughter

nuclei

Emitted

cluster

Q (MeV) Penetrability Decay log10T1/2 (s)

NL3* FRDM Expt. P constant NL3* UDL Horoi FRDM DNSM

[236] λ(s−1) [236]
106Xe 98Sn 8Be 6.94 8.12 7.85× 10−46 1.69× 10−25 22.58 21.24 23.35 16.02
108Xe 100Sn 8Be 10.19 11.41 8.73× 10−31 2.76× 10−10 7.53 6.93 5.09 3.73
110Xe 102Sn 8Be 8.52 10.25 2.68× 10−37 7.08× 10−17 14.05 13.19 13.23 7.24
112Xe 104Sn 8Be 6.77 8.13 1.01× 10−46 2.13× 10−26 23.47 22.13 24.83 15.78
114Xe 106Sn 8Be 5.08 6.49 3.02× 10−60 4.78× 10−40 36.99 34.83 41.28 25.22
108Ba 100Te 8Be 6.98 8.24 3.92× 10−48 8.53× 10−28 24.88 23.49 25.66 17.73
110Ba 102Te 8Be 9.1 10.40 5.82× 10−37 1.65× 10−16 13.71 12.92 12.39 8.69
112Ba 104Te 8Be 7.97 9.22 3.36× 10−42 8.34× 10−22 18.95 17.92 18.82 13.1
114Ba 106Te 8Be 6.23 7.32 2.17× 10−43 4.15× 10−53 29.86 28.26 32.04 22.52
116Ba 108Te 8Be 4.38 5.81 1.10× 10−52 1.48× 10−71 48.31 45.47 53.97 33.31
108Xe 96Cd 12C 14.23 14.77 3.60× 10−45 1.42× 10−24 21.93 21.06 18.16 20.04
110Xe 98Cd 12C 16.59 17.18 1.51× 10−37 6.99× 10−17 14.28 13.70 9.28 12.68
112Xe 100Cd 12C 14.96 15.44 1.88× 10−42 7.85× 10−22 19.21 18.47 15.28 17.64
114Xe 102Cd 12C 12.51 12.95 9.00× 10−52 3.14× 10−31 28.55 27.44 26.43 26.6
116Xe 104Cd 12C 10.35 10.86 1.17× 10−62 3.37× 10−42 39.46 37.81 39.30 36.53
110Ba 98Sn 12C 18.46 19.77 3.37× 10−35 1.73× 10−14 11.95 11.45 6.15 8.86
112Ba 100Sn 12C 22.54 22.31 23.17 1.93× 10−26 1.21× 10−05 3.19 2.79 -4.19 3.61 0.44
114Ba 102Sn 12C 19.78 20.81 21.11 6.83× 10−32 3.77× 10−11 8.64 8.22 2.51 6.42 4.08
116Ba 104Sn 12C 17.48 18.2 17.15 1.96× 10−37 9.57× 10−17 14.18 13.70 9.27 12.28 16.20
118Ba 106Sn 12C 15.89 15.72 15.29 5.52× 10−42 2.45× 10−21 18.73 18.14 14.78 19.29 22.56

(Continued on next page)
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Table 4.1 – continued from previous page

Parent

nuclei

Daughter

nuclei

Emitted

cluster

Q (MeV) Penetrability Decay log10T1/2 (s)

NL3* FRDM Expt. P constant NL3* UDL Horoi FRDM DNSM

[236] λ(s−1) [236]
112Ba 96Cd 16O 24.68 25.88 9.10× 10−42 6.12× 10−21 18.51 17.86 10.91 15.84
114Ba 98Cd 16O 27.32 27.94 27.98 5.38× 10−36 4.01× 10−15 12.74 12.17 4.52 11.53 5.80
116Ba 100Cd 16O 24.85 25.71 24.65 3.99× 10−41 2.70× 10−20 17.87 17.28 10.56 15.95 15.40
118Ba 102Cd 16O 22.71 22.38 22.13 2.72× 10−46 1.68× 10−25 23.08 22.38 16.59 23.95 22.41
120Ba 104Cd 16O 20.48 20.11 1.19× 10−52 6.61× 10−32 29.4 28.59 23.93 30.58
114Ce 98Sn 16O 31.69 31.65 5.75× 10−31 4.96× 10−10 7.71 7.14 -1.46 7.79
116Ce 100Sn 16O 32.43 33.54 1.18× 10−29 1.04× 10−08 6.41 5.83 -2.79 4.72
118Ce 102Sn 16O 30.08 30.79 30.55 1.95× 10−33 1.60× 10−12 10.18 9.68 1.74 8.95 7.38
120Ce 104Sn 16O 27.31 27.77 1.29× 10−38 9.61× 10−18 15.36 14.88 7.80 14.42
122Ce 106Sn 16O 25.11 25.12 2.23× 10−43 1.52× 10−22 20.13 19.61 13.35 20.12
116Ce 96Cd 20Ne 31.56 34.02 1.17× 10−48 9.97× 10−28 25.41 24.59 16.35 20.33
118Ce 98Cd 20Ne 33.09 34.83 34.64 2.78× 10−45 2.49× 10−24 22.03 21.27 12.96 18.63 13.04
120Ce 100Cd 20Ne 30.31 32.19 2.81× 10−51 2.30× 10−30 28.05 27.23 19.57 23.76
122Ce 102Cd 20Ne 26.15 28.69 3.84× 10−62 2.72× 10−41 38.89 37.88 31.35 31.88
124Ce 104Cd 20Ne 23.91 25.84 2.97× 10−69 1.92× 10−48 46.01 44.78 39.06 39.71
126Ce 106Cd 20Ne 20.69 23.13 1.50× 10−81 8.40× 10−61 58.31 56.62 52.12 48.61
118Nd 98Sn 20Ne 36.53 39.03 2.62× 10−41 2.59× 10−20 18.06 18.29 9.41 14.71
120Nd 100Sn 20Ne 37.99 40.1 1.28× 10−38 1.31× 10−17 15.38 15.58 6.89 12.84
122Nd 102Sn 20Ne 34.17 37.54 37.58 1.96× 10−45 1.81× 10−24 22.18 22.58 14.37 16.92 13.30
124Nd 104Sn 20Ne 31.67 34.5 1.53× 10−50 1.32× 10−29 27.29 27.81 20.14 22.45
126Nd 106Sn 20Ne 28.34 31.62 3.83× 10−59 2.94× 10−38 35.89 35.97 29.09 28.51
128Nd 108Sn 20Ne 25.18 28.76 1.98× 10−66 1.35× 10−45 43.18 45.12 39.08 35.51
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The results have been tabulated in table 4.1. The first column contains the parent

nuclei, second and third columns contain the daughter nuclei and emitted clusters, respec-

tively. The calculated Q-values using RMF in the present work along with FRDM, and

experimental values [236] are listed in columns 4, 5, and 6, respectively. The penetrability

and decay constants (λ) for the alpha-like cluster decays are given in columns 7 and 8 re-

spectively. Columns 9-11 contain the cluster decay half-lives obtained using ELDM, UDL

formula, and Horoi formula. Column 12 contains ELDM results with Q values obtained

from FRDM data, and column 13 lists DNSM results [236] for the sake of comparison.

From the results, one can see that ELDM and UDL results are quite similar but show a

small difference in comparison to the results obtained by the Scaling Law of Horoi. This

can be understood as the Horoi formula is the simple scaling law and the coefficient sets

are estimated by fitting the experimental data with the parent charge number Z=87-96

only. Although small nuclear structure information is taken into account, their prediction

power is not good. However, the UDL formula is derived from the α-like R-matrix theory,

so its prediction accuracy is close to the microscopic results. The calculated Q values from

RMF (NL3* parameter set) are also given in table 4.1 and are compared with FRDM val-

ues. A small discrepancy is observed which can be attributed to the microscopic origin of

calculations of one set considering pairing strength and shell correction energy terms.

In table 4.2, we have presented the calculated Q values and cluster decay half-lives using

RMF (NL3*), UDL, and the Scaling law of Horoi in the transition metal region. The ex-

perimental and FRDM data taken from reference [202, 235] respectively, are also given for

comparison. It is evident from table 4.2 that the calculated Q values using RMF (NL3*)

are slightly lower than the FRDM and experimental data because a small change in the

values of a parameter of the NL3* and FRDM will affect the values of binding energy per

nucleon. Also, we compare half-lives of RMF (NL3*), UDL, Horoi, FRDM, and UNIV

reference [237]. The calculated half-lives using RMF (NL3*) and UDL values are almost

the same but the results obtained by the Horoi formula are slightly lower. From Table 4.2

we can see that the calculated half-lives are larger than the FRDM and UNIV values.

This disagreement can be understood due to the variation of Q values in RMF (NL3*),

FRDM, and experimental data.

It can be seen from figure 4.1 that for the cluster decay of 12C from 110−118Ba isotopes,

the Q value has a maximum at doubly magic nuclei 100Sn (Zd = 50, Nd = 50). For the

cluster decay of 16O from 112−120Ba isotopes the Q value has a maximum for the forma-

tion of near doubly magic daughter nuclei 98Cd (Zd = 48, Nd = 50). The shell effect at

Nd = 50 is very obvious and the shell effect at 100Sn is most pronounced. Figure 4.2 shows
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Figure 4.2: Same as figure 4.1, but for the clusters (12C and 16O) decay from W and Os

isotopes, respectively.

the results for the Q values for the alpha-like clusters decay from W and Os isotopes of

the transition metal region. It is observed that for the cluster decay of 12C from 158−170W

isotopes, the Q value has a maximum for daughter nuclei 150Er (Zd = 68, Nd = 82) and

similarly 16O decay from 160−174Os, the Q value has a maximum for daughter nuclei 150Er

(Zd = 68, Nd = 82). The analyses of figures 4.1 and 4.2 clearly show that the calculated

Q value indicates shell effects at Nd = 50, 82 and affects the half-lives. As the size of the

α-like cluster increases, the Q value also increases.

The half-lives of the alpha-like clusters (12C and 16O) decay from various isotopes within

the RMF(NL3*), UDL, Scaling Law by Horoi et al., FRDM and DNS models as a function

of the neutron number of a daughter (Nd) are plotted in figures 4.3 and 4.4. We can see

from figure 4.3, where the plot for the cluster decay of 12C from 108−116Xe and 110−118Ba

isotopes is presented, that the minima of the cluster decay half-lives are found for the

decay leading to near doubly magic daughter nuclei 98Cd (Zd = 48, Nd = 50) and doubly

magic nuclei 100Sn (Zd = 50, Nd = 50), respectively.
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Figure 4.3: The computed log10T 1/2 (in s) values plotted against the neutron number of

daughter nuclei (Nd) for the emission of 12C from Xe and Ba isotopes. The DNSM data

are taken from reference [236].
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isotopes. The DNSM data are taken from reference [236].



4
.2

.
R

esu
lts

a
n

d
D

iscu
ssio

n
s

67
Table 4.2: The Q-value, penetrability P , decay constant (λ(s−1)) and decay half-lives (log10T1/2 (s)) for the decay of alpha-like

cluster ( 8Be, 12C, 16O, 20Ne, and 24Mg ) from even-even parent nuclei in the transition metal region.

Parent

nuclei

Daughter

nuclei

Emitted

cluster

Q (MeV) Penetrability Decay log10T1/2 (s)

NL3* FRDM Expt. P constant NL3* UDL Horoi FRDM UNIV

[202] λ(s−1) [237]

156Hf 148Er 8Be 5.43 8.54 8.67 6.24× 10−84 1.05× 10−63 60.21 57.98 63.29 33.06 31.7

158Hf 150Er 8Be 7.93 11.49 10.78 2.13× 10−60 5.24× 10−40 37.16 35.98 38.09 18.33 20.82

160Hf 152Er 8Be 6.73 10.13 9.62 7.34× 10−70 1.53× 10−49 46.61 44.88 48.41 24.24 26.27

162Hf 154Er 8Be 5.89 8.43 8.49 3.44× 10−78 6.30× 10−58 54.94 52.68 57.46 33.62 32.57

164Hf 156Er 8Be 5.26 7.79 7.45 9.67× 10−86 1.58× 10−65 62.49 59.73 65.66 37.91

166Hf 158Er 8Be 4.56 6.97 6.50 6.87× 10−96 9.75× 10−76 72.64 69.18 76.63 44.31

158W 150Yb 8Be 6.07 9.84 10.001 1.75× 10−79 3.30× 10−59 56.24 53.94 57.91 27.89 26.46

160W 152Yb 8Be 8.86 12.72 12.002 1.25× 10−56 3.43× 10−36 33.39 32.54 33.65 15.58 6.44

162W 154Yb 8Be 8.05 11.51 10.990 2.03× 10−61 5.07× 10−41 38.17 37.45 39.34 20.06 21.72

164W 156Yb 8Be 7.34 10.11 10.088 2.89× 10−67 6.58× 10−47 44.01 42.56 45.24 26.30 25.81

166W 158Yb 8Be 7.04 9.29 9.180 1.90× 10−69 4.17× 10−49 46.19 44.78 47.82 30.54 30.56

168W 160Yb 8Be 6.02 8.47 8.338 1.17× 10−78 2.19× 10−58 55.14 54.06 58.49 35.54

160Os 152Hf 8Be 6.28 10.39 10.42 5.01× 10−80 9.78× 10−60 56.77 54.56 57.89 28.16

162Os 154Hf 8Be 9.56 13.74 13.288 9.74× 10−55 2.89× 10−34 31.49 30.81 31.28 13.85 14.89

164Os 156Hf 8Be 8.62 13.07 12.453 6.47× 10−57 1.73× 10−36 33.78 36.12 37.34 15.99 17.73

166Os 158Hf 8Be 8.10 11.62 11.724 7.96× 10−64 2.01× 10−43 40.78 39.41 41.13 21.39 20.44

168Os 160Hf 8Be 8.01 10.94 11.002 1.74× 10−64 4.32× 10−44 41.25 40.05 41.93 24.27 23.37

170Os 162Hf 8Be 7.59 10.09 10.30 1.56× 10−67 3.68× 10−47 44.34 42.95 45.26 28.31 26.58

158W 146Er 12C 17.58 20.41 20.627 1.84× 10−59 9.03× 10−39 36.21 35.97 33.28 26.63 25.09

(Continued on next page)
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Table 4.2 – continued from previous page

Parent

nuclei

Daughter

nuclei

Emitted

cluster

Q (MeV) Penetrability Decay log10T1/2 (s)

NL3* FRDM Expt. P constant NL3* UDL Horoi FRDM UNIV

[202] λ(s−1) [237]

160W 148Er 12C 18.74 22.67 22.102 4.07× 10−55 2.13× 10−34 31.86 31.81 28.89 20.31 7.15

162W 150Er 12C 22.07 24.51 23.830 5.33× 10−45 3.28× 10−24 21.75 21.98 18.39 15.85 16.8

164W 152Er 12C 20.05 22.77 22.266 1.15× 10−50 6.43× 10−30 27.41 27.53 24.51 19.85 20.41

166W 154Er 12C 19.25 20.67 20.716 4.07× 10−53 2.18× 10−32 29.86 29.92 27.20 25.46 24.44

168W 156Er 12C 17.83 19.58 19.323 5.78× 10−58 2.87× 10−37 34.71 34.61 32.39 28.72

170W 158Er 12C 16.21 18.42 18.010 2.18× 10−64 9.86× 10−44 41.14 40.79 39.19 32.54

160Os 148Yb 12C 18.76 21.6 21.98 9.87× 10−58 5.17× 10−37 34.48 34.41 31.24 25.52

162Os 150Yb 12C 20.66 24.34 24.135 2.09× 10−51 1.20× 10−30 28.15 28.29 24.83 18.38 18.16

164Os 152Yb 12C 23.02 26.49 25.848 9.81× 10−45 6.31× 10−24 21.48 21.80 18.02 13.61 14.44

166Os 154Yb 12C 22.35 24.94 24.495 2.13× 10−46 1.32× 10−25 23.15 23.44 19.87 16.81 17.19

168Os 156Yb 12C 21.74 23.23 23.271 5.98× 10−48 3.63× 10−27 24.69 24.97 21.62 20.17 19.88

170Os 158Yb 12C 20.51 21.97 22.083 1.88× 10−5 1.07× 10−30 28.21 28.41 25.42 23.98 22.77

172Os 160Yb 12C 18.39 20.86 20.932 1.83× 10−58 9.41× 10−38 35.21 35.18 32.79 27.07

158W 142Dy 16O 29.61 31.64 31.162 3.49× 10−55 2.81× 10−34 31.93 32.04 26.49 27.12 27.17

160W 144Dy 16O 30.06 32.68 31.93 6.06× 10−54 4.96× 10−33 30.96 30.84 25.42 24.72 8.05

162W 146Dy 16O 30.71 33.89 33.291 2.80× 10−52 2.34× 10−31 29.03 29.22 23.88 22.09 22.53

164W 148Dy 16O 34.23 35.58 34.362 1.59× 10−44 1.48× 10−23 21.27 21.53 16.13 18.71 20.38

166W 150Dy 16O 31.52 32.94 32.158 3.45× 10−50 2.96× 10−29 26.94 27.19 22.07 23.79 24.57

168W 152Dy 16O 29.39 30.29 29.971 4.09× 10−55 3.28× 10−34 31.86 32.06 27.23 29.69

170W 154Dy 16O 27.04 28.73 27.842 2.25× 10−61 1.65× 10−40 38.12 38.22 33.67 33.48

172W 156Dy 16O 25.86 26.17 26.16 9.22× 10−65 6.50× 10−44 41.51 41.53 37.32 40.57

(Continued on next page)
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Table 4.2 – continued from previous page

Parent

nuclei

Daughter

nuclei

Emitted

cluster

Q (MeV) Penetrability Decay log10T1/2 (s)

NL3* FRDM Expt. P constant NL3* UDL Horoi FRDM UNIV

[202] λ(s−1) [237]

160Os 144Er 16O 31.03 33.68 33.08 1.42× 10−54 2.67× 10−27 31.32 31.51 25.76 25.39

162Os 146Er 16O 32.81 35.12 34.556 2.22× 10−50 8.35× 10−25 27.11 27.39 21.71 22.34 22.58

164Os 148Er 16O 34.41 36.65 35.743 6.74× 10−47 5.70× 10−23 23.64 23.95 18.37 19.31 20.32

166Os 150Er 16O 36.48 38.15 37.131 9.73× 10−43 9.11× 10−19 19.49 19.81 14.35 16.53 17.8

168Os 152Er 16O 34.75 36.1 35.244 6.17× 10−46 4.72× 10−23 22.68 23.03 17.74 20.08 20.93

170Os 154Er 16O 33.04 33.55 33.415 2.35× 10−49 1.33× 10−25 26.01 26.45 21.31 25.03 24.32

172Os 156Er 16O 31.91 32.18 31.712 8.78× 10−52 1.55× 10−29 28.54 28.87 23.91 27.91

174Os 158Er 16O 29.62 30.68 30.045 3.29× 10−57 1.83× 10−33 33.96 34.24 29.51 31.32

166Pt 150Yb 16O 36.89 38.92 38.583 1.65× 10−44 1.66× 10−23 21.26 21.67 15.98 17.68 17.67

168Pt 152Yb 16O 38.96 41.08 40 9.80× 10−41 1.04× 10−19 17.48 17.83 12.26 14.02 15.33

170Pt 154Yb 16O 37.79 39.33 38.364 1.21× 10−42 1.24× 10−21 19.39 19.78 14.36 16.73 17.78

172Pt 156Yb 16O 36.73 37.40 36.898 1.78× 10−44 1.77× 10−23 21.22 21.64 16.36 19.98 20.14

174Pt 158Yb 16O 35.34 36.16 35.428 4.61× 10−47 4.45× 10−26 23.82 24.26 19.12 22.19 22.68

176Pt 160Yb 16O 33.64 34.59 33.96 1.73× 10−50 1.59× 10−29 27.24 27.69 22.71 26.23

166Pt 146Er 20Ne 40.02 46.44 46.572 2.51× 10−63 2.72× 10−42 40.02 40.18 33.02 27.26 26.1

168Pt 148Er 20Ne 41.35 47.98 47.463 3.09× 10−60 3.46× 10−39 36.98 37.15 30.27 24.46 24.54

170Pt 150Er 20Ne 45.28 49.28 48.568 2.61× 10−52 3.21× 10−31 29.06 29.25 22.87 22.18 22.7

172Pt 152Er 20Ne 43.21 47.01 46.438 3.90× 10−56 4.57× 10−35 32.88 33.11 26.72 25.81 25.9

174Pt 154Er 20Ne 40.31 44.48 44.328 4.40× 10−62 4.80× 10−41 38.83 39.06 32.58 30.25 29.35

176Pt 156Er 20Ne 38.32 42.65 42.32 1.31× 10−66 1.35× 10−45 43.36 43.54 37.04 33.71

178Pt 158Er 20Ne 36.28 40.77 40.35 1.33× 10−71 1.31× 10−50 48.35 48.47 41.93 37.53

(Continued on next page)
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Table 4.2 – continued from previous page

Parent

nuclei

Daughter

nuclei

Emitted

cluster

Q (MeV) Penetrability Decay log10T1/2 (s)

NL3* FRDM Expt. P constant NL3* UDL Horoi FRDM UNIV

[202] λ(s−1) [237]

170Hg 150Yb 20Ne 44.18 50.86 50.95 1.18× 10−57 1.41× 10−36 34.41 34.68 27.78 22.65

172Hg 152Yb 20Ne 46.31 52.59 52.253 1.93× 10−53 2.42× 10−32 30.21 30.45 23.95 19.82 19.84

174Hg 154Yb 20Ne 45.94 50.69 50.327 6.84× 10−54 8.52× 10−33 30.64 31.12 24.63 22.58 22.42

176Hg 156Yb 20Ne 45.38 48.54 48.527 7.24× 10−55 8.91× 10−34 31.62 31.93 25.67 25.95 25.01

178Hg 158Yb 20Ne 42.51 47.02 46.735 1.70× 10−60 1.96× 10−39 37.24 37.58 31.19 28.45 27.77

180Hg 160Yb 20Ne 39.73 45.31 44.956 4.38× 10−77 4.71× 10−56 52.70 43.56 37.02 31.49 30.72

166Pt 142Dy 24Mg 52.88 58.54 59.262 1.97× 10−60 2.81× 10−39 37.18 37.07 29.42 27.63 26.13

168Pt 144Dy 24Mg 53.42 58.86 59.446 2.64× 10−59 3.82× 10−38 36.05 35.96 28.58 26.96 25.72

170Pt 146Dy 24Mg 54.56 59.53 60.183 4.05× 10−57 5.98× 10−36 33.87 33.79 26.76 25.77 24.57

172Pt 148Dy 24Mg 57.63 60.69 60.689 8.31× 10−52 1.29× 10−30 28.55 28.43 22.03 23.87 23.75

174Pt 150Dy 24Mg 53.49 57.62 57.924 1.54× 10−58 2.23× 10−37 35.29 35.38 28.59 28.41 27.38

176Pt 152Dy 24Mg 50.61 54.23 55.11 5.64× 10−64 7.73× 10−43 40.72 40.75 33.71 33.93

178Pt 154Dy 24Mg 48.64 51.95 52.33 8.27× 10−68 1.09× 10−46 44.56 44.60 37.43 37.94

180Pt 156Dy 24Mg 46.67 49.37 50.02 6.02× 10−72 7.61× 10−51 48.69 48.73 41.73 42.88

170Hg 146Er 24Mg 56.21 62.51 63.97 6.36× 10−58 9.68× 10−37 34.62 34.68 27.33 24.81

172Hg 148Er 24Mg 58.03 63.62 64.303 9.99× 10−55 1.56× 10−33 31.47 31.42 24.62 23.01 22.01

174Hg 150Er 24Mg 60.76 64.77 65.118 3.08× 10−50 5.06× 10−29 26.99 26.87 20.63 21.24 20.87

176Hg 152Er 24Mg 59.31 62.28 62.654 1.90× 10−52 3.05× 10−31 29.19 29.14 22.89 24.57 23.76

178Hg 154Er 24Mg 55.97 59.47 60.222 1.13× 10−57 1.71× 10−36 34.42 34.47 27.92 28.65 26.85

180Hg 156Er 24Mg 53.79 57.49 57.893 2.03× 10−61 2.95× 10−40 38.17 38.27 31.55 31.68 30.04

182Hg 158Er 24Mg 51.43 55.3 55.66 8.21× 10−66 1.14× 10−44 42.56 42.69 35.75 35.27
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Figure 4.5: The log10T 1/2 (in s) values for 8Be decay from various isotopes of the parent

nuclei (Hf, W, and Os nuclei, respectively) plotted as a function of the neutron number

of daughter nuclei (Nd). The UNIV data are taken from reference [237].

Figure 4.4 illustrates the cluster decay of 16O from 112−120Ba and 114−122Ce isotopes.

The minima of the cluster decay half-lives are found for the decay leading near doubly

magic daughter nuclei 98Cd (Zd = 48, Nd = 50) and doubly magic nuclei 100Sn (Zd =

50, Nd = 50), respectively. It is clearly seen from figures 4.3 and 4.4 that the shell

stabilizes at magic daughter nuclei (Nd = 50). We also compare these results with the

results obtained from the dinuclear system model (DNMS) [236]. From Table 4.1 it is

found that the difference is significant between our calculated half-lives and those with

the DNSM, which is caused by the differences of our calculated Q-values and those of

reference [236]. The CR half-lives are strongly dependent on the Q-values and the model

chosen. The logarithm of half-life evaluated using RMF (NL3*) are compared with the

experimental half-life [57] and reference [50] for 12C cluster emitting from 114Ba, and

are given in Table 4.3. We see that the calculated RMF (NL3*) half-life is close to

experimental data in comparison to the results of GLDM reference [50]. Therefore, the

approach adopted in the present work (by calculating cluster decay half-lives using ELDM

with RMF inputs) explains well for potential CR nuclei in trans-tin and transition metal

regions.

The half-lives of the alpha-like clusters (8Be, 12C, and 16O) decay of some isotopes

(transition metal region) within the RMF(NL3*), UDL, and Scaling Law by Horoi et al.,



72 Chapter 4. Cluster decay half-lives in trans-tin and transition metal region

Table 4.3: Comparison between the experimental data of the 12C radioactivity of 114Ba isotope and the estimated ones by the

NL3*, GLDM, FRDM and DNSM.

Parent Daughter cluster Q (MeV) log10T1/2 (s)

nucleus nucleus decay NL3* Expt. FRDM Ref. NL3* UDL GLDM Expt. FRDM DNSM

[238] [235] [236] [50] [57, 50] [236]

114Ba 102Sn 12C 19.78 19.0 20.81 21.11 8.64 8.22 9.90 >4.10 6.42 4.08
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Figure 4.6: Same as for figure 4.5, but for the 12C decay half-lives in the W and Os

isotopes. The UNIV data are taken from reference [237].
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Figure 4.7: Same as for figure 4.5 and 4.6, but for the 16O decay half-lives in the W, Os,

and Pt isotopes. The UNIV data are taken from reference [237].
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FRDM and UNIV [237] models as a function of the neutron number of a daughter (Nd)

are plotted in figures 4.5-4.7. Figure 4.5 shows the plot for the cluster decay of 8Be from
156−166Hf, 158−168W, and 160−170Os isotopes, respectively. The cluster decay half-lives are

found to have minima for the decay leading to daughter nuclei 150Er (Zd = 68, Nd = 82),
152Yb (Zd = 70, Nd = 82), and 154Hf (Zd = 72, Nd = 82), which have magic neutron

number Nd = 82. Figure 4.6 presents the cluster decay of 12C from 158−170W and 160−172Os

isotopes. The cluster decay half-lives are found to have a minimum value for the decay

leading to magic daughter nuclei 150Er (Zd = 68, Nd = 82), 152Yb (Zd = 70, Nd = 82),

respectively. Similarly, Figure 4.7 shows the cluster decay of 16O from 158−172W, 160−174Os,

and 166−176Pt isotopes. The minima of the cluster decay half-lives are found for the decay

leading to magic daughter nuclei 148Dy (Zd = 66, Nd = 82), 150Er (Zd = 68, Nd = 82),
152Yb (Zd = 70, Nd = 82), respectively. The minimum value in the cluster decay half-lives

corresponds to the higher barrier penetrability, which shows the doubly magic character

(proton/neutron shell closure) of the daughter nuclei. In the present studies on trans-tin

and transition metal region, it has been found that the decay half-lives have a minimum

value for the decay leading to the doubly magic daughter nuclei 100Sn (Zd = 50, Nd = 50)

or its neighboring daughter nuclei and magic daughter nuclei Nd = 82, respectively. Also,

the decay half-lives show the minimum value for the magic neutron number of a daughter

(Nd = 50, 82). These observations reveal the role of the strong shell effects in cluster

radioactivity. We can see from figures 4.5-4.7 that the half-lives log10T1/2 shown versus

neutron number of daughter nuclei Nd reveal the fact that the NL3*, UDL, Scaling Law

by Horoi et al., FRDM and UNIV exhibit almost similar trends in all plots, but the half-

lives obtained using the Scaling Law by Horoi et al. reveal small deviations from NL3*

and UDL values.

We also calculate the Q-values and half-lives of the alpha-like (Ae = 4n, Ze = Ne, Ze and

Ne are the atomic number and neutron number of the emitted cluster, respectively) cluster

radioactivity, as well as non-alpha-like (Ae = 4n + 2, Ze 6= Ne) cluster radioactivity. The

results are plotted in figures 4.8 and 4.9, respectively. The Q value of the 20,22Ne decays

for 160−174W isotopes obtained from RMF (NL3*) formalism are given in figure 4.8(a) for

comparison. It is clear from figure 4.8(a) that the calculated Q value of 20Ne decay is

greater than those of the 22Ne decays with shell effect at Nd = 82. We have repeated the

same calculations for 24,26Mg decays in 118−130Nd isotopes using the same formalism and

the results are shown in figure 4.8(b). The Q-values of the 24Mg decay are higher than

those of the 26Mg decay. In figure 4.9(a) we show the half-lives of the 20Ne decay in W

isotopes obtained from RMF (NL3*) formalism and empirical formulas (UDL and Scaling
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Figure 4.8: Comparison ofQ value obtained from RMF (NL3*) calculations: (a) for 20,22Ne

emissions from W isotopes, (b) for 24,26Mg emissions from Nd isotopes. The experimental

data are taken from reference [202].

Law by Horoi et al.). For the same nucleus, the half-lives of the 22Ne decay are shown

in figure 4.9(b) for comparison. We would like to note that the half-lives of 22Ne decay

are greater than those of the 20Ne decays. The minima of the cluster decay half-lives are

found for the decay leading to magic daughter nuclei 146Gd (Zd = 64, Nd = 82). We have

repeated the same calculations for 24,26Mg decays in Nd isotopes using the same methods

and the results are shown in figures 4.9(c) and (d). In this case, also the half-lives of the

non-alpha-like cluster (26Mg) decay is higher than those of the alpha-like cluster (24Mg)

decay. The minima of the cluster decay half-lives are found for the near doubly magic

daughter nuclei 98Cd (Zd = 48, Nd = 50). Low Q values of the non-alpha-like cluster

decays lead to larger half-lives. This results in the fact that non-alpha-like clusters decay

are more complicated to observe than alpha-like Ze = Ne.

In order to investigate the predictive power of our chosen model, we have calculated the

standard deviation of half-live (log10T1/2) values for the RMF (NL3*) and have compared

it with the calculated standard deviation of half-lives values of UDL and Scaling Law of

Horoi. The standard deviation is given by

σ =

[
1

n− 1

n∑
i=1

[log(T cal1/2)− log(T exp1/2 )]2

]1/2

. (4.2.6)

In the case of FRDM, we found that the standard deviation of the log10T1/2 is 5.32 for

RMF (NL3*), 4.28 for UDL, and 6.62 for the scaling law of Horoi. For the case of DNSM,
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Figure 4.9: Comparison of half-lives obtained from RMF (NL3*) and empirical formula

(UDL and Horoi) calculations: (a) for 20Ne emission from W isotopes, (b) for 22Ne emission

from W isotopes, (c) for 24Mg emission from Nd isotopes, and (d) for 26Mg emission from

Nd isotopes. The UNIV data are taken from reference [237].

we found that the standard deviation of the log10T1/2 is 5.46 for RMF (NL3*), 5.26 for

UDL, and 4.99 for the scaling law of Horoi.

In 1911 Geiger and Nuttall experimentally confirmed the relation between the decay

constant λ and the range R of alpha particles, which is the Geiger-Nuttall law [239, 240].

Figure 4.10 shows the Geiger-Nuttall plots for half-lives (log10T1/2) versus Q−1/2 (Q in

MeV) for the different clusters (8Be, 12C, 16O, 20Ne and 24Mg) emitted from the parents
106−116Xe, 108−120Ba, 114−126Ce, 118−128Nd, 156−166Hf, 158−172W, 160−174Os, 166−180Pt, and
170−182Hg isotopes. A linear behavior in each case is clearly shown in figure 4.10. The

Geiger-Nuttall law is written in the form:

log10T1/2 =
X√
Q

+ Y, (4.2.7)

where X and Y are the slopes and intercepts of the straight lines, respectively. We would

like to point out that the G-N law is for pure Coulomb potential. The calculated results

plots reveal that the inclusion of surface potential and shell effect (through Q value) will

not produce an extreme variation to the straight-line behavior. Each emitted alpha-like

cluster has a distinct slope and intercept.
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Figure 4.10: Geiger-Nuttall plots for log10T 1/2 (in s) versus Q−1/2(MeV−1/2) for alpha-like

clusters from different parent nuclei.
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penetrability (-ln P ) for alpha-like clusters (8Be, 12C, 16O, 20Ne and 24Mg) from different

parent nuclei.
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logarithmic half-lives (log10T1/2) versus the negative logarithm of penetrability (-ln P ).

The universal curves for 8Ba, 12C, 16O and 20Ne from the parents 106−114Xe, 110−118Ba,
114−122Ce, and 118−128Nd and 8Ba, 12C, 16O, 20Ne and 24Mg from the parents 156−166Hf,
158−170W, 160−174Os, 166−178Pt, and 170−182Hg are given in figure 4.11. Here, both the

graphs are found to have linear behavior with nearly equal slopes of 0.457 and intercepts

of -20.923, which exhibit that the assault frequency is almost a constant for all cluster’s

decay. This shows that the inclusion of surface potential does not produce a significant

variation in the linear behavior of universal curves.

4.3 Conclusions

In summary, we have studied the Q values and cluster decay half-lives for even-even

CR nuclei in the trans-tin region (106−116Xe, 108−120Ba, 114−126Ce, and 118−128Nd) and

transition metal region (156−166Hf, 158−172W, 160−174Os, 166−180Pt, and 170−182Hg) using

RMF model with NL3* parameter set and empirical formulas: UDL and Scaling Law

by Horoi et al.. The ELDM of cluster decay has been used to calculate cluster decay

half-lives.

The calculated Q value has a maximum for near doubly magic daughter nuclei 98Cd,
102Te and doubly magic daughter nuclei 100Sn (Z = 50, N = 50) in the trans tin region

and transition metal nuclei, the Q value has a maximum for neutron number of daughter

nuclei Nd = 82, which is a magic number. The calculated Q value indicates the shell

effects at Nd = 50, 82 and influences the half-lives. In the trans-tin region, the minima

of the cluster decay half-lives are found for the decay leading to doubly magic daughter

nuclei 100Sn (Z = 50, N = 50) and near doubly magic daughter nuclei 102Te, 98Cd. The

cluster decay half-lives are found to have a minimum value for the decay leading magic

daughter nuclei 150Er (Z = 68, N = 82), near doubly magic nuclei 152Yb (Z = 70, N = 82),
154Hf (Z = 72, N = 82), respectively, in transition metal region. The calculated half-lives

of cluster decay using RMF(NL3*) are compared with the values of the empirical formula

UDL and Scaling Law by Horoi et al.. It is found that our results obtained with ELDM

in conjunction with RMF are close to the results obtained with the UDL formula. It can

be seen that the prediction power of the Horoi formula is limited. It has been found that

the UDL formula, derived from the α-like R-matrix theory, has better prediction ability

giving comparable results with microscopic calculations. Also, results obtained in this

work are in good agreement with experimental data as compared to the GLDM results

[50]. Therefore, the ELDM in conjunction with relativistic model inputs is well-suited for
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explaining CR from trans-tin and transition metal regions. The decay constant (λ) for

cluster decay will be maximum if the corresponding logarithmic half-life is minimum. It

is found that the Q values of the 20Ne and 24Mg (Ne = Ze) decays are larger than those

of the 22Ne and 26Mg (Ne 6= Ze) decays, but the half-lives of the non-alpha-like cluster

( 22Ne and 26Mg) decays are higher than those of the alpha-like cluster (20Ne and 24Mg)

decays. Low Q values of the non-alpha-like cluster emissions lead to larger half-lives. The

Geiger-Nuttal plots clearly show a linear behavior with different slopes and intercepts for

various α-like clusters decay from various parent nuclei.



Chapter 5

Structure and decay modes study of

Th, U, and Pu isotopes
1

5.1 Introduction

The study of structural properties of heavy and super-heavy nuclei has become an inter-

esting problem of nuclear physics with increasing access to the nuclei at extremes. Heavy

nuclei are normally dynamically unstable. The energy is obtained by breaking the heavy

nucleus into two components. However, few heavy nuclei decay by quantum-mechanical

leakage through the potential barrier. The alpha decay, beta decay, and gamma decay of

heavy nuclei are preceded by the synthesis of heavy nuclei which lie far from the stability

line. The study of alpha decay is very informative and important, as it gives significant

information about the shell and sub-shell structure of the parent nuclei.

Alpha decay was first described by Ernest Rutherford [241] and H. Geiger [242] at the

beginning of the last century. Subsequently, the alpha decay phenomenon has been ex-

plained successfully as a quantum tunneling effect by G. Gamow [243] and by E. U.

Condon and R. W. Gurney [244] in 1928. The half-lives of α-decay from various parent

nuclei vary from 10−7 to 1018 s and α-decay emitted among 4 and 11 MeV of kinetic

energies. The alpha decay half-lives of 218−219U isotopes have been experimentally mea-

sured by Leppanen et al. [245] in 2007. Sushil Kumar et al. [246] have studied the shell

closure effects in heavy nuclei through cluster decay and have calculated half-lives for

different cluster decay modes of 218U isotope and also for 230,232,234,236U isotopes using the

1The results discussed in this chapter have been published in Nucl. Phys. A, 1023, 122439 (2022).
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preformed cluster model (PCM) model.

Cluster radioactivity is known as the spontaneous emission of a cluster whose mass lies

at an intermediate position between alpha particles and the lightest fission fragments.

It was first observed theoretically in 1980 by Sandulescu, Poenaru, and Greiner [24, 25].

After a few years, the spontaneous emission of a 14C cluster from 223Ra parent nuclei was

experimentally confirmed by Rose and Jones from the University of Oxford [52]. The

cluster decay half-lives of various parent nuclei vary from 1011 to 1030 s. A few years later

the detection of 14C from 223Ra, many other decay modes, like 20O, 23F, 24,26Ne, 28.30Mg

and 32,34Si, various radioactive nuclei like 221Fr, 221−224,226Ra, 225Ac, 228,230,232Th, 231Pa,
232−236U, 237Np, 236,238,240Pu and 241Am were observed by several experimental groups

around the world [69, 78, 93]. So far, 22Ne, 24Ne, 25Ne, 26Ne, 28Mg, 29Mg, and 30Mg clus-

ters decay from 230,232−236U isotopes have been experimentally confirmed [64]. The decay

of heavier clusters have been experimentally observed in trans-lead region decaying into

daughter nuclei are doubly magic or nearly doubly magic (i.e. 208Pb (doubly closed-shell

spherical nucleus with Z = 82, N = 126) or around neighboring nuclei) [52, 90, 91]. Even

another island of CR was predicted in the trans-tin region decaying into the daughter

nuclei close to the doubly magic nucleus 100Sn [92]. The CR of the trans-lead region has

been predicted since 1984.

Many theoretical models and approaches have been employed for the study of cluster

radioactive phenomenon. In general, the description can be classified mainly into two

types of models, 1) preformed cluster model and 2) fission-based model. In the PCM

[247, 248, 249], it is assumed that the clusters made of various nucleons are performed in

the parent nucleus before they could tunnel through the barrier created by the nuclear

and Coulomb potentials [104, 105, 106]. In the fission-based model [108], the nucleus is

assumed to be deformed continuously and reach the saddle or scission configuration to un-

dergo cluster radioactivity [36, 94, 107]. In such type of fission model approach, Gamow’s

idea of quantum mechanical barrier penetration is still used, but without worrying about

the cluster being or not being performed in the parent nucleus.

Goncalves and Duarte [162, 163, 164] introduced a model, the Effective Liquid Drop

Model (ELDM) to study alpha decay, and cluster radioactivity in a unified framework

and has been used for calculating half-life time [228] for the heavy and superheavy re-

gions. In the ELDM model, the surface and Coulomb energies for the dinuclear shape

were calculated analytically, thus obtaining the barrier penetrability factor for alpha de-

cay and cluster emission. Microscopic calculations for the cluster radioactivity half-life

predictions are thus model dependent as different microscopic/phenomenological nuclear
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models are used to calculate mass defect and the Q-value of the reaction with separate

calculations for cluster emission probability. In addition, many empirical formulas have

been introduced by fitting Q values and experimental half-lives of cluster radioactivity

process, such as the UDL, Horoi, TM, and VS formulas.

In recent years, the CR half-lives from various clusters decay have been estimated within

several models by inputting different kinds of Q-values [43, 46, 233, 250, 251]. These cal-

culations provide useful content about the shell and/or sub-shell structure of the parent

nuclei. In this work, we have used the ELDM with varying mass asymmetry (VMAS)

shape and effective inertial coefficient to determine the alpha and cluster decay half-lives,

using mass excess data calculated from a relativistic mean-field model (NL3* parameter

set).

In this chapter, with the RMF model, we have calculated the bulk properties of Th, U, and

Pu isotopes such as binding energy per nucleon (B.E./A), and root-mean-square (rms)

radii with an NL3* parameter set. Next, we obtain the two-neutron separation energies

(S2n) and the differential variation of neutron separation energy (dS2n) from the calculated

B.E. of Th, U, and Pu isotopes. These calculations are associated with structural phe-

nomena like closed shell and sub-shell structures. Along with this, the mass excess data

(∆M) for alpha and clusters decay are calculated by using the obtained binding energy

per nucleon. This mass excess data (∆M) has been used further as input to obtain a Q

value and determine the alpha and cluster decay half-lives with the ELDM. Comparisons

of our results with the available experimental results and the values obtained using the

empirical formula Universal Decay Law (UDL), Viola-Seaborg (VS), TM and the Scaling

Law by Horoi et al. are also made. In addition, the Geiger-Nuttall plots of
√
Q versus

log10T1/2 for emission of 8Be, 12C, 16O, 20Ne, and 24Mg clusters for various isotopes of

parent nuclei have been analyzed demonstrating their linear nature.

5.2 Results and Discussions

In this work, we have presented our calculated values of the ground state observables,

namely, binding energy per nucleon (B.E./A), rms radii, two-neutron separation energy

(S2n), and differential variation of two-neutron separation energy (dS2n) for even-even Th,

U, and Pu isotopes obtained by using RMF model with NL3* parameter set. The NL3*

parameter set has been widely used to evaluate different ground-state properties of the

whole range of nuclei in the nuclear landscape. The calculated results are compared with

FRDM and experimental data.
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5.2.1 Binding energy per nucleon and rms radii

Using the well-known RMF model, we have examined the ground state properties of

the considered isotopes namely the binding energy per nucleon (B.E./A), charge radii

(Rch), and rms radius (proton (rp), and neutron (rn)), with an NL3* parameter set. The

theoretically evaluated results are compared with finite-range droplet model (FRDM)

[235] data and available experimental results [202, 204], as given in Figs. 5.1, 5.2 and 5.3.

In Fig. 5.1(a) the showed binding energy per nucleon (B.E./A) increases with the neutron

number (N) increase, reaches the peak value at neutron number N ∼ 126 (A = 216,

Z = 90) for RMF (NL3*), FRDM, and experimental data, and it decreases towards

a higher neutron number. This means that 216Th is the most stable element from the

B.E. per nucleon (B.E./A) plots. Similar results are also shown in Fig. 5.1 (b and c), the

B.E./A increases with the neutron number (N) increase, reaches the maximum value at N

∼ 126 [A = 218, Z = 92), and (A = 220, Z = 94)], after that it decreases with the higher

neutron number (N). This means that 218U and 220Pu are also the most stable elements

from the B.E. per nucleon (B.E./A) plots. Similar outcomes are also obtained from the

experimental results [202] and FRDM values [235]. In order to analyze the predictive
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Figure 5.1: The binding energy per nucleon (B.E./A) calculated from RMF (NL3* pa-

rameter set) compared with the FRDM [235] and experimental values [202] for Th, U,

and Pu isotopes.

power and accuracy of the selected RMF (NL3*) model, we have determined the mean

deviation of binding energy per nucleon results for the NL3* parameter in comparison

to the available experimental results of even-even Th, U, and Pu isotopes. The mean
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deviation (σ) between any two different ith observables Yi, is written as

σ =
1

n

n∑
i=1

|Y exp.
i − Y cal.

i |. (5.2.1)

The mean deviation for the calculated RMF values of B.E./A with respect to the exper-

imental data is 0.015, 0.021, and 0.006 for Th, U, and Pu isotopes respectively. Also,

the NL3* parameter values of the binding energy per nucleon slightly overestimate the

experimental data for N = 122-136, N = 124-138, and N = 124-140 in Th, U, and Pu

isotopes respectively but for the rest of the isotopes, the RMF results agree well with the

experimental results [202] and FRDM values [235]. This also reveals that the nucleons

are more bound for NL3* parameter set.

The rms charge radii (Rch) for NL3* parameter are compared with the available experi-
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Figure 5.2: The charge radii (Rch) of Th, U, and Pu isotopes for RMF (NL3*) formalism

are compared with the available experimental data [204].

mental data [204] which are given in Fig. 5.2. From the Fig, we see that calculated results

for NL3* overestimate slightly in comparison to the experimental data for all considered

isotopes. The charge radii increase with the increasing neutron number N but with a small

kink at N = 126, indicating the shell closure effect. A similar signature is also observed

in Fig. 5.3, showing the rms radii of a neutron and proton (Rn,p) for the isotopic chains of

even-even Th, U, and Pu nuclei obtained using the RMF formalism with NL3* parameter

set. This confirms the observed shell enclosure at N = 126 for all the considered isotopes.
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Figure 5.3: The neutron (rn), and proton (rp) radii of Th, U, and Pu isotopes calculated

with the RMF (NL3*) formalism.
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Figure 5.4: The two-neutron separation energy S2n obtained from RMF (NL3* parameter

set) for Th, U, and Pu isotopes compared with FRDM [235] and experimental results

[202].

5.2.2 Two-neutron separation energy (S2n)

The two-neutron separation energy (S2n) is a significant quantity in understanding the

nuclear shell structure. In the present study, the S2n(N,Z) has been calculated from the

binding energy (B.E.) by using RMF (NL3*) formalism, given by the following equation:

S2n(N,Z) = B.E.(N,Z)−B.E.(N − 2, Z). (5.2.2)

The S2n values of parent nuclei for the chosen isotopes are compared with FRDM [235]

and experimental data [202], as given in Fig. 5.4. From Fig. 5.4 (a, b, and c), it is
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distinctly shown that the S2n results decrease with an increase in the neutron number (N)

in considered isotopes except for a sharp fall seen at the neutron number N = 126 due to

the effect of shell closure in the RMF (NL3*) model, as well as FRDM and experimental

data. Here we found an unexpected change, possibly the reason for the existence of the

shell/sub-shell closure. In Fig. 5.4 we see a possible major shell closure at neutron number

N = 126 magic number.

5.2.3 Differential variation of two-neutron separation energy

The differential variation of the two-neutron separation energy (S2n) with respect to the

neutron number (N) i.e., dS2n(N,Z) is calculated using the relation

dS2n(N,Z) =
S2n(Z,N + 2)− S2n(Z,N)

2
. (5.2.3)

We have theoretically calculated dS2n(N,Z) using Eq. (5.2.3) and then compared it with

FRDM and experimental results S2n(N,Z). The theoretically calculated results of differ-

ential variation of the two-neutron separation energy (dS2n) for even-even Th, U, and Pu

isotopes plotted versus neutron number (N) is given in Fig. 5.5. In Fig. 5.5 (a, b, and c),

for the isotopes of Th, U, and Pu nuclei, the value of dS2n exhibits a sharp, large fall at

neutron number N = 126 indicating the shell closure. In the dS2n values, the sharp peak

at N = 126 again confirms the shell/sub-shell of 216Th, 218U and 220Pu. Also, the sharp

decline appears in the same region (N = 126) as that of the S2n.
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Figure 5.5: The calculated dS2n obtained from RMF (NL3*) compared with FRDM [235]

and experimental results [202] for Th, U, and Pu isotopes.
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5.2.4 Alpha decay

We have investigated the Qα and decay half-lives results for potential even-even isotopes

of Th, U, and Pu nuclei. In this calculation of alpha-decay half-lives, we have used the

ELDM model. In this model, we have chosen a combination of the varying mass asym-

metry shape (VMAS) and effective inertial coefficient. It is essential to note here that

in the ELDM model alpha decay half-lives estimation has been performed here by using

zero angular momenta.

The theoretically calculated binding energy per nucleon (B.E./A) has been used to de-

termine the Qα-values, penetrability (P ), decay constant (λ), and alpha decay half-lives

of considered isotopes of parent nuclei. Firstly, using the B.E./A in RMF (NL3* param-

eter set), we have determined the mass excess data (∆M). The relation between binding

energy per nucleon and mass excess data is written as

Mass of the Nuclei = ((N*Mn +Z*Mp)*931.5 - A*B.E./A)/931.5 u

∆M = ( Mass of the Nuclei - Mass No. of Nuclei)*931.5 MeV

We have further used these calculated mass excess data to estimate the Qα-values using

the following relation:

Qα(N,Z) = ∆Mp(N,Z)− [∆Md(N − 2, Z − 2) + ∆Me(2, 2)]. (5.2.4)

In Eq. (5.2.4) ∆Mp(N,Z) and ∆Md(N − 2, Z − 2) are the mass excess of the parent and

the daughter nuclei in MeV, respectively. ∆Me(2, 2) is the mass excess of the 4
2He nucleus.

All possible cluster decays for the parent nuclei have been considered, for which Q-value

(Q > 0) is found to be positive.

In Table 5.1 we have presented the theoretically calculated Qα-values, penetrability (P ),

decay constant (λ), and the alpha decay half-lives for the selected even-even nuclei. We

have tested the prediction power and accuracy of different models used for alpha decay

half-lives investigation. For this, we have compared the values determined by the ELDM

model with the results obtained by empirical formula, namely the UDL, VS, and Scaling

Law by Horoi et al.. Further, to test the influence of the difference in the Q value, we have

compared calculated alpha decay half-lives using ELDM using experimental mass defect

data from Ref [202]. The results have been tabulated in Table 5.1. From Table 5.1 it is

found that the alpha decay half-life has a minimum for the parent nucleus 218Th as per

the ELDM (NL3*), UDL, Horoi, and VS models. The experimental α-decay half-life also

shows the minimum value of half-life at the 218Th parent nucleus. The minimum half-life
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Table 5.1: The Qα value, penetrability, decay constant and the alpha decay half-lives for

Th, U, and Pu isotopes.

Parent Daughter Emitted Q-value Penetrability Decay log10T1/2 (s) Expt. [202]

nuclei nuclei cluster (MeV) P constant ELDM UDL Horoi VS Q-value log10T1/2

[NL3*] λ(s−1) (NL3*) (MeV) (s)

214Th 210Ra 4He 7.61 1.05E-22 3.67E-02 -0.54 -0.48 -0.69 -0.98 7.82 -1.06

216Th 212Ra 4He 8.28 1.61E-20 6.12E+00 -2.73 -2.61 -2.81 -3.12 8.07 -1.58

218Th 214Ra 4He 11.84 1.18E-12 6.44E+08 -10.59 -10.45 -10.74 -11.13 9.85 -6.93

220Th 216Ra 4He 11.59 4.85E-13 2.58E+08 -10.21 -10.05 -10.31 -10.68 8.97 -5.12

222Th 218Ra 4He 10.07 6.50E-16 3.01E+05 -7.33 -7.14 -7.31 -7.66 8.13 -2.56

224Th 220Ra 4He 9.87 2.16E-16 1.18E+05 -6.92 -6.72 -6.86 -7.21 7.30 -1.02

226Th 222Ra 4He 9.68 1.01E-16 4.51E+04 -6.53 -6.34 -6.45 -6.78 6.45 2.51

228Th 224Ra 4He 8.96 1.81E-18 7.46E+02 -4.78 -4.61 -4.65 -4.98 5.52 7.29

216U 212Th 4He 8.56 1.40E-20 5.47E-00 -2.67 -2.51 -2.84 -3.08 8.53 -2.35

218U 214Th 4He 9.42 3.68E-18 1.59E+03 -5.08 -4.88 -5.19 -5.48 8.78 -3.28

220U 216Th 4He 12.56 4.90E-12 2.83E+09 -11.21 -11.07 -11.37 -11.78 11.68 -9.45

222U 218Th 4He 12.51 4.33E-12 2.49E+09 -11.16 -11.01 -11.28 -11.69 9.43 -6.14

224U 220Th 4He 11.57 1.34E-13 7.14E+07 -9.65 -9.45 -9.69 -10.07 8.62 -3.07

226U 222Th 4He 10.61 2.23E-15 1.09E+06 -7.87 -7.66 -7.85 -8.19 7.70 -0.73

228U 224Th 4He 10.41 1.74E-16 1.03E+05 -7.42 -7.25 -7.41 -7.76 6.80 2.72

230U 226Th 4He 8.87 2.18E-19 8.89E+01 -3.86 -3.67 -3.77 -4.04 5.99 6.21

232U 228Th 4He 7.18 8.32E-25 2.74E-04 1.56 1.62 1.57 1.38 5.42 9.23

220Pu 216U 4He 11.92 1.25E-13 6.82E+07 -9.39 -9.75 -9.91 -10.14

222Pu 218U 4He 14.65 1.11E-09 7.48E+11 -13.51 -13.83 -13.87 -14.33

224Pu 220U 4He 14.59 1.07E-09 7.19E+11 -13.49 -13.78 -13.81 -14.28

226Pu 222U 4He 13.85 1.29E-10 8.21E+10 -12.51 -12.77 -12.84 -13.24

228Pu 224U 4He 13.34 2.76E-11 1.69E+10 -11.81 -12.04 -12.12 -12.49 7.94 -1.08

230Pu 226U 4He 11.43 2.51E-14 1.32E+07 -8.68 -8.88 -9.05 -9.24 7.17 2.49

232Pu 228U 4He 8.13 2.69E-22 1.01E-01 -0.78 -0.96 -1.36 -1.11 6.71 4.89

234Pu 230U 4He 7.76 1.78E-23 6.35E-03 0.36 0.21 -0.22 0.08 6.31 6.17

236Pu 232U 4He 7.17 1.29E-25 4.24E-05 2.43 2.31 1.82 2.24 5.87 8.16

indicates the shell effect for the daughter nucleus 214Ra (A = 88, Nd=126). Similarly in the

case of U and Pu isotopes, the shell stabilization at the daughter nucleus 216Th (A = 90,

Nd=126) and 218U (A = 92, Nd=126) having magic neutron number Nd = 126 is clearly

observed. The calculated alpha decay half-lives using ELDM agree well with the half-lives

obtained empirical formula UDL than that of the VS, and Scaling law of Horoi formula.

It has been found that the UDL formula, derived from the α like-R matrix theory, has

better prediction power giving comparable results with microscopic calculations. The Qα
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values are calculated using RMF (NL3*) and are also shown in Table 5.1 and compared

with the experimental data. From Table 5.1, we find that the theoretically calculated Qα

values using RMF (NL3*) are slightly overestimated in comparison to the experimental

data because the binding energy of the emitted alpha particle is slightly overestimated,

and the corresponding mass excess data is underestimated for NL3* in comparison to the

experimental data. The microscopic energy (shell correction energy), becomes crucial for

the appropriate mass evaluation. The Qα value and decay half-life, obtained from both

the RMF calculation and experimental result, coincide well for the parent nucleus 216U.

We have calculated the standard deviation of alpha decay half-lives value for the ELDM

(NL3*) and have compared it with the calculated standard deviation of half-lives value of

the empirical formula UDL, VS, and Scaling Law of Horoi and experimental data. In the

case of ELDM, we found that the standard deviation of the decay half-lives is 0.204 s for

UDL, 0.497 s for VS, and 0.294 s for the scaling law of Horoi. For the case of experimental

data, we found that the standard deviation of the log10T
α
1/2 is 6.58 s for ELDM (NL3*).

The sensitivity of decay half-lives on Qα can also be determined through the standard

deviation in Qα values which are found to be 2.757 MeV for RMF (NL3*). It is evident

here to note that a small deviation in Qα values are enough to change the alpha decay

half-lives.

5.2.5 Cluster decay

We have also investigated the decay of different clusters such as 8Be, 12C, 16O, 20Ne, and
24Mg in 218−234Th, 218−232U, and 224−238Pu isotopes. The Q-values are evaluated from

mass excess data of RMF (NL3*) using the following relations:
8Be :

QBe(N,Z) = ∆Mp(N,Z)− [∆Md(N − 4, Z − 4) + ∆Me(4, 4)] (5.2.5)

12C :

QC(N,Z) = ∆Mp(N,Z)− [∆Md(N − 6, Z − 6) + ∆Me(6, 6)] (5.2.6)

16O :

QO(N,Z) = ∆Mp(N,Z)− [∆Md(N − 8, Z − 8) + ∆Me(8, 8)] (5.2.7)

20Ne :

QNe(N,Z) = ∆Mp(N,Z)− [∆Md(N − 10, Z − 10) + ∆Me(10, 10)] (5.2.8)

24Mg :

QMg(N,Z) = ∆Mp(N,Z)− [∆Md(N − 12, Z − 12) + ∆Me(12, 12)] (5.2.9)
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Here ∆Mp(N,Z) is the mass excess of the parent nucleus, ∆Md(N − 4, Z− 4), ∆Md(N −
6, Z − 6), ∆Md(N − 8, Z − 8), ∆Md(N − 10, Z − 10) and ∆Md(N − 12, Z − 12) are the

mass excess of the daughter nuclei and ∆Me(4, 4), ∆Me(6, 6), ∆Me(8, 8), ∆Me(10, 10)

and ∆Me(12, 12) are the mass excess of the clusters 8Be, 12C, 16O, 20Ne and 24Mg, re-

spectively.

In this work, we have tested the prediction power and accuracy of different models used
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Figure 5.6: The Q-values for the 12C decay from Th, U, and Pu isotopes using RMF

formalism with NL3* parameter set, compared with the experimental data [203], wherever

available.

for cluster decay half-lives calculation. The cluster decay half-lives have been calculated

using ELDM and various empirical formulas: TM, Universal Decay Law (UDL), and Scal-

ing Law by Horoi et al. The calculated Q-values and cluster decay half-lives (log10T1/2)

are given in Table 5.2. The parent, daughter, and emitted cluster are listed in columns

1, 2, and 3 respectively. The theoretically calculated Q-value using RMF (NL3*) is listed

in column 4. The penetrability and decay constant for the cluster decay are given in

columns 5 and 6. Columns 7-10 contain the decay half-lives obtained using ELDM, UDL,

Horoi, and TM models. The experimental Q-values and calculated half-lives using the

UDL formula are listed in columns 11 and 12, respectively for the sake of comparison.

From Table 5.2 it should be noticed that when 8Be is decayed from 218−228Th isotopes,

the cluster decay half-life has a minimum for the 220Th nucleus for both theoretical and

experimental Q-values. In the case of 218−230U and 222−234Pu isotopes, the cluster decay

half-life has a minimum for 222U and 224Pu isotopes, which indicates possible shell and/or

sub-shell closure at 214Ra and 216Th, daughters respectively. When cluster decay of 12C
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from selected even-even isotopes, it is found from Table 5.2 that the half-life has a mini-

mum for 222Th, 224U and 226Pu parent nuclei, respectively. This indicates that the decay

constant of 12C is the maximum for 222Th, 224U, and 226Pu isotopes. A similar observation

is valid for the cluster decay of 16O and 20Ne from Th, U, and Pu isotopes. The minimum

value of the logarithmic half-lives are found for 224Th, 226U and 228Pu isotopes for the

cluster decay of 16O and 228U, 230Pu isotopes for the cluster decay of 20Ne. In the case of

the cluster decay of 24Mg from Pu isotopes, the minimum value of the half-life is found

for 232Pu isotope with the ELDM (NL3*), UDL, TM, and Horoi formalism. However, the

experimental value of half-life shows minima at the 228Pu parent nucleus. This difference

is perhaps because of the sensitivity of decay half-life to the angular momentum L [252]

and Q-value [253]. For the cluster decay of 8Be, 12C, 16O, 20Ne and 24Mg, logarithmic

half-lives have minimum values for those decays which leads to the creation of daughter

nuclei (i.e.,208Pb, 210Po, 212Rn, 214Ra, and 216Th) having magic neutron number (Nd =

126). These observations reveal the role of shell closure in cluster radioactivity. From

Table 5.2 it is found that the ELDM (NL3*) results matches nicely with the UDL results

than that of TM, Horoi results. The decay half-life has a minimum value correspond-
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Figure 5.7: Same as figure 5.6, but for the 16O decay from Th, and Pu isotopes, respec-

tively.

ing to the maximum barrier penetrability and decay constant, which reveals the magic

character of the daughter nuclei. The experimental Q values taken from reference [203]

are also shown from a comparison in Table 5.2. It is evident from Table 5.2 that the

calculated Q values using RMF (NL3*) are slightly underestimated than the experimen-

tal data because the binding energy of the emitted clusters is slightly underestimated
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and the corresponding mass excess data is overestimated for NL3* in comparison to the

experimental data. Also, we can see that the calculated half-life results are higher than

the experimental data. This disagreement can be understood due to the variation of Q

values in the RMF (NL3*), and experimental data.

From Fig. 5.6 it is shown that 12C decay from 218−234Th, 218−232U and 222−236Pu isotopes
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Figure 5.8: The computed log10T 1/2 (in s) values plotted against the neutron number of

daughter nuclei (Nd) for the emission of 12C from Th, U, and Pu isotopes.
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Figure 5.9: Same as figure 5.8, but for the 16O decays half-lives in the Th, U, and Pu

isotopes.

the Q-value has a maximum for the formation of daughter nuclei 210Po (Zd = 84, Nd =

126), 212Rn (Zd = 86, Nd = 126) and 214Ra (Zd = 88, Nd = 126), respectively. Similarly,
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for the cluster decay of 16O, Q-value has a maximum for the formation of magic daughter

nuclei ( i.e., 208Pb, and 212Rn ) having magic number (Nd = 126) shown in Fig. 5.7. These

calculated results exhibit that the Q-value will be higher for those decay which leads to

magic daughter nuclei (Nd = 126). In addition, the calculated Q-values reveal the shell

effects at magic number Nd = 126 and influence the decay half-lives. As the size of cluster

increases, the Q value also increases.

Figures 5.8 and 5.9 provide plots for the half-lives of the 12C and 16O decay from even-even

Th, U and Pu isotopes within the ELDM, UDL, TM, and Scaling Law by Horoi et al.

models using NL3* Q-values versus the neutron number of a daughter (Nd). In Fig. 5.8

the plot for the cluster decay of 12C from 218−234Th, 218−232U and 222−236Pu isotopes, it can

be seen that the minimum value of the cluster decay half-lives are obtained for the decay

leading daughter nuclei 210Po (Zd = 84, Nd = 126), 212Rn (Zd = 86, Nd = 126) and 214Ra

(Zd = 88, Nd = 126), respectively. The value of half-life, in the ELDM, UDL, TM, Horoi

and Expt. data coincides well for the 222Th, 224U and 226Pu parent nucleus, but towards

large neutron number of a daughter (Nd) we do not have an agreement with the experi-

mental data. Figure 5.9 illustrates the cluster decay of 16O from 218−234Th, 218−232U and
224−236Pu isotopes. The minima of the cluster decay half-lives are obtained for the decay

leading magic daughter nuclei 208Pb (Zd = 82, Nd = 126), 210Po (Zd = 84, Nd = 126), and
212Rn (Zd = 86, Nd = 126), respectively. In this study, it has been found that the cluster

decay half-lives have a minimum for the decay leading to the doubly magic daughter nuclei
208Pb (Zd = 82, Nd = 126) or its neighbouring daughter nuclei. Also, these calculations

confirm that the shell structure stabilizes at magic daughter nuclei (Nd = 126). The

value of log10T1/2, in the RMF model, coincides well with the data for 208Pb. The results

presented in Figs. 5.8 and 5.9 confirm the fact that the four calculations ELDM, UDL,

TM and Scaling law by Horoi and experimental results lead almost to similar trends of

half-lives.

In order to find out the predictive strength of our selected theoretical model, we have

determined the standard deviation of half-life values for the RMF (NL3*) and have com-

pared it with the calculated standard deviation of half-lives values of UDL, TM, and

Scaling Law of Horoi formula. The standard deviation is given by

σ =

[
1

n− 1

n∑
i=1

[log(T cal1/2)− log(T exp1/2 )]2

]1/2

. (5.2.10)

In the case of ELDM, we found that the standard deviation of the half-lives is 1.365 s for

UDL, 2.231 s for TM, and 2.588 s for the scaling law of Horoi.
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Table 5.2: Comparison of cluster decay half-lives for 8Be, 12C, 16O, 20Ne and 24Mg decays for even-even Th, U, and Pu isotopes.

Parent

nuclei

Daughter

nuclei

Emitted

cluster

Q-value Penetrability Decay log10T1/2 (s) [NL3*] Expt.[203]

(MeV) P constant ELDM UDL Horoi TM Q-value log10T1/2(s)

[NL3*] λ(s−1) (MeV) (UDL)
218Th 210Rn 8Be 9.71 1.66E-67 5.02E-47 44.25 43.69 44.04 46.08 17.03 14.02
220Th 212Rn 8Be 12.80 5.55E-51 2.21E-30 27.74 27.99 27.56 28.24 18.38 10.55
222Th 214Rn 8Be 11.23 2.16E-58 7.56E-38 35.14 35.07 35.09 36.37 16.58 15.14
224Th 216Rn 8Be 8.97 1.94E-72 5.41E-52 49.19 48.36 49.18 51.58 14.79 20.53
226Th 218Rn 8Be 8.23 2.28E-78 5.83E-58 55.12 53.94 55.14 58.01 13.04 26.86
228Th 220Rn 8Be 7.24 1.51E-87 3.39E-67 64.31 62.55 64.29 67.86 11.22 34.96
218U 210Ra 8Be 6.22 1.13E-102 2.19E-82 79.42 76.72 78.08 82.43 16.52 16.96
220U 212Ra 8Be 10.04 1.75E-67 5.45E-47 44.23 43.75 43.70 45.33 18.27 12.24
222U 214Ra 8Be 13.53 1.19E-49 5.02E-29 26.4 26.79 26.03 26.27 19.26 9.84
224U 216Ra 8Be 12.35 1.00E-54 3.85E-34 31.47 31.66 31.19 31.82 17.48 14.15
226U 218Ra 8Be 10.47 1.38E-64 4.50E-44 41.33 41.03 41.06 42.44 15.73 19.09
228U 220Ra 8Be 10.59 8.26E-64 2.72E-43 40.56 40.31 40.37 41.68 14.01 24.84
230U 222Ra 8Be 7.75 4.03E-85 9.70E-65 61.87 60.38 61.43 64.34 12.35 31.51

222Pu 214Th 8Be 13.04 1.49E-53 6.02E-33 30.31 30.58 29.65 29.86
224Pu 216Th 8Be 16.55 9.92E-41 5.11E-20 17.48 18.22 16.91 16.15
226Pu 218Th 8Be 15.55 7.50E-44 3.63E-23 20.6 21.26 20.13 19.60
228Pu 220Th 8Be 14.10 5.53E-49 2.42E-28 25.73 26.22 25.33 25.19 16.47 18.38
230Pu 222Th 8Be 11.23 3.48E-62 1.22E-41 38.93 38.83 38.47 39.28 14.78 23.73
232Pu 224Th 8Be 8.54 1.81E-80 4.82E-60 57.22 56.07 56.42 58.54 13.42 28.76
234Pu 226Th 8Be 5.82 5.35E-111 9.69E-91 87.75 84.58 86.04 90.33 12.21 33.93
218Th 206Po 12C 22.49 3.68E-60 2.31E-39 36.92 37.56 34.91 38.14 30.55 17.57
220Th 208Po 12C 27.32 1.10E-46 8.42E-26 23.43 24.46 21.81 25.21 32.14 14.45
222Th 210Po 12C 33.68 6.88E-34 6.48E-13 10.65 11.63 9.85 12.68 33.15 12.55

(Continued on next page)
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Table 5.2 – continued from previous page

Parent

nuclei

Daughter

nuclei

Emitted

cluster

Q-value Penetrability Decay log10T1/2 (s) [NL3*] Expt.[203]

(MeV) P constant ELDM UDL Horoi TM Q-value log10T1/2(s)

[NL3*] λ(s−1) (MeV) (UDL)
224Th 212Po 12C 27.88 3.43E-45 2.68E-24 21.95 23.01 20.53 23.93 30.36 17.70
226Th 214Po 12C 24.76 5.88E-53 4.07E-32 29.71 30.67 28.30 31.56 27.66 23.43
228Th 216Po 12C 22.68 4.33E-59 2.74E-38 35.85 36.66 34.39 37.54 24.98 30.02
230Th 218Po 12C 19.84 4.41E-69 2.45E-48 45.83 46.33 44.16 47.13 22.50 37.15
232Th 220Po 12C 16.98 9.40E-82 4.46E-61 58.5 58.47 56.41 59.15 19.97 45.78
234Th 222Po 12C 14.32 4.69E-97 1.87E-76 73.81 72.99 71.04 73.51 17.43 56.28
218U 206Rn 12C 20.86 2.86E-68 1.67E-47 45.02 45.57 42.43 45.15 31.03 18.55
220U 208Rn 12C 24.50 3.30E-56 2.26E-35 32.96 33.89 30.93 33.84 32.67 15.33
222U 210Rn 12C 29.74 3.76E-43 3.13E-22 19.91 21.02 18.26 21.38 33.89 13.06
224U 212Rn 12C 31.9 9.67E-39 8.62E-18 15.49 16.60 13.97 17.16 34.37 12.16
226U 214Rn 12C 29.37 9.09E-44 7.46E-23 20.52 21.65 19.08 22.16 31.64 17.03
228U 216Rn 12C 27.73 2.15E-47 1.67E-26 24.15 25.26 22.75 25.75 28.96 22.47
230U 218Rn 12C 24.62 2.02E-55 1.39E-34 32.18 33.17 30.68 33.53 26.39 28.47
232U 220Rn 12C 21.94 8.72E-64 5.35E-43 40.53 41.31 38.85 41.52 23.99 34.92

222Pu 210Ra 12C 28.18 1.23E-48 9.68E-28 25.38 26.62 23.49 26.19
224Pu 212Ra 12C 32.38 1.20E-39 1.08E-18 16.41 17.57 14.77 17.64
226Pu 214Ra 12C 34.92 4.94E-35 4.82E-14 11.78 12.90 10.27 13.22
228Pu 216Ra 12C 33.28 6.75E-38 6.27E-17 14.64 15.82 13.23 16.11 32.79 16.63
230Pu 218Ra 12C 29.44 2.21E-45 1.82E-24 22.13 23.34 20.72 23.42 30.28 21.53
232Pu 220Ra 12C 26.25 5.01E-53 3.67E-32 29.78 30.90 28.26 30.78 28.09 26.34
234Pu 222Ra 12C 23.03 1.96E-62 1.26E-41 39.18 40.09 37.38 39.69 26.03 31.42
236Pu 224Ra 12C 20.02 2.11E-73 1.18E-52 50.15 50.69 47.90 49.95 24.07 36.85
218Th 202Pb 16O 35.43 1.54E-60 1.49E-39 37.29 38.33 34.06 38.34 43.04 22.80

(Continued on next page)
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Table 5.2 – continued from previous page

Parent

nuclei

Daughter

nuclei

Emitted

cluster

Q-value Penetrability Decay log10T1/2 (s) [NL3*] Expt.[203]

(MeV) P constant ELDM UDL Horoi TM Q-value log10T1/2(s)

[NL3*] λ(s−1) (MeV) (UDL)
220Th 204Pb 16O 40.11 2.51E-50 2.75E-29 27.07 28.17 24.55 29.39 44.51 20.17
222Th 206Pb 16O 44.21 8.69E-43 1.05E-21 19.53 20.55 17.44 22.72 45.72 18.07
224Th 208Pb 16O 46.94 2.35E-38 3.01E-17 15.11 16.02 13.26 18.79 46.48 16.76
226Th 210Pb 16O 43.88 3.99E-43 4.77E-22 19.87 20.92 18.01 23.23 42.66 23.07
228Th 212Pb 16O 39.71 1.15E-50 1.25E-29 27.42 28.56 25.37 30.11 39.05 29.87
230Th 214Pb 16O 34.72 1.36E-61 1.29E-40 38.34 39.45 35.81 39.84 35.78 36.92
232Th 216Pb 16O 31.21 5.68E-71 4.83E-50 47.72 51.75 47.21 48.11
234Th 218Pb 16O 28.07 7.35E-81 5.62E-60 57.61 64.94 59.23 56.71
218U 202Po 16O 35.41 2.40E-63 2.31E-42 40.09 41.18 36.46 40.16 44.58 22.52
220U 204Po 16O 38.68 9.19E-56 9.69E-35 32.52 33.67 29.53 33.67 46.10 19.86
222U 206Po 16O 42.91 2.22E-47 2.59E-26 24.13 25.27 21.75 26.38 47.21 17.98
224U 208Po 16O 46.81 9.49E-41 1.21E-19 17.51 18.52 15.53 20.56 47.92 16.77
226U 210Po 16O 51.85 2.15E-33 3.04E-12 10.12 10.81 8.69 13.81 48.01 16.53
228U 212Po 16O 47.02 3.51E-40 4.50E-19 16.94 17.96 15.22 20.26 44.33 22.43
230U 214Po 16O 41.56 2.03E-49 2.30E-28 26.17 27.37 24.18 28.59 40.82 28.79
232U 216Po 16O 37.76 4.57E-57 4.70E-36 33.81 35.05 31.50 35.40 37.56 35.52

224Pu 208Rn 16O 47.23 2.91E-42 3.75E-21 19.02 20.12 16.91 21.50
226Pu 210Rn 16O 51.51 7.05E-36 9.91E-15 12.63 13.53 10.91 15.92
228Pu 212Rn 16O 53.16 1.39E-33 2.02E-12 10.33 11.14 8.79 13.92 49.48 16.39
230Pu 214Rn 16O 48.72 1.25E-39 1.66E-18 16.38 17.44 14.73 19.47 45.99 21.84
232Pu 216Rn 16O 43.77 1.34E-47 1.60E-26 24.35 25.61 22.47 26.62 42.84 27.32
234Pu 218Rn 16O 40.31 4.01E-54 4.40E-33 30.87 32.18 28.72 32.40 39.86 33.10
236Pu 220Rn 16O 37.02 3.41E-61 3.44E-40 37.94 39.24 35.40 38.59 37.02 39.26

(Continued on next page)
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Table 5.2 – continued from previous page

Parent

nuclei

Daughter

nuclei

Emitted

cluster

Q-value Penetrability Decay log10T1/2 (s) [NL3*] Expt.[203]

(MeV) P constant ELDM UDL Horoi TM Q-value log10T1/2(s)

[NL3*] λ(s−1) (MeV) (UDL)
220U 200Pb 20Ne 39.82 1.50E-85 1.62E-64 62.31 63.10 55.67 57.53 56.01 28.78
222U 202Pb 20Ne 43.87 7.08E-75 8.42E-54 51.62 52.62 46.44 49.13 57.27 26.61
224U 204Pb 20Ne 47.61 2.48E-66 3.21E-45 43.08 44.16 39.01 42.37 57.86 25.56
226U 206Pb 20Ne 50.76 6.99E-60 9.63E-39 36.64 37.72 33.37 37.25 58.15 24.97
228U 208Pb 20Ne 54.11 1.01E-53 1.49E-32 30.47 31.51 27.94 32.33 58.01 25.07
230U 210Pb 20Ne 48.69 1.09E-63 1.44E-42 40.44 41.57 37.08 40.56 53.38 32.67
232U 212Pb 20Ne 42.81 7.98E-77 9.26E-56 53.57 54.64 48.91 51.23 49.20 40.42

224Pu 204Po 20Ne 49.42 9.74E-66 1.31E-44 42.49 43.65 38.29 41.39
226Pu 206Po 20Ne 52.70 2.83E-59 4.04E-38 36.02 37.16 32.69 36.21
228Pu 208Po 20Ne 56.08 3.06E-53 4.65E-32 29.99 31.05 27.42 31.43 60.60 23.88
230Pu 210Po 20Ne 58.33 1.70E-49 2.69E-28 26.24 27.25 24.17 28.48 59.92 24.77
232Pu 212Po 20Ne 51.08 6.69E-62 9.27E-41 38.65 39.85 35.47 38.65 55.77 31.34
234Pu 214Po 20Ne 45.25 3.37E-74 4.14E-53 50.95 52.13 46.50 48.55 51.86 38.26
236Pu 216Po 20Ne 40.87 2.97E-85 3.29E-64 62.01 63.03 56.31 57.34 48.16 45.56
238Pu 218Po 20Ne 37.57 6.47E-95 6.59E-74 71.66 72.47 64.81 64.96 44.84 52.88
224Pu 200Pb 24Mg 61.58 2.66E-69 4.44E-48 46.05 46.98 41.38 43.19
226Pu 202Pb 24Mg 64.68 1.23E-63 2.15E-42 40.39 41.28 36.68 39.02
228Pu 204Pb 24Mg 67.91 3.33E-58 6.13E-37 34.95 35.76 32.14 34.97 75.13 24.99
230Pu 206Pb 24Mg 69.15 4.13E-56 7.73E-35 32.86 33.63 30.48 33.49 74.65 25.51
232Pu 208Pb 24Mg 69.19 6.73E-56 1.26E-34 32.65 33.43 30.45 33.44 74.04 26.23
234Pu 210Pb 24Mg 63.41 3.15E-65 5.42E-44 41.97 42.96 38.71 40.69 69.01 33.58
236Pu 212Pb 24Mg 56.94 1.56E-77 2.40E-56 54.28 55.36 49.39 50.09 64.38 41.12
238Pu 214Pb 24Mg 51.49 8.43E-90 1.18E-68 66.56 67.55 59.92 59.33 60.27 48.52
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Figure 5.10: The branching ratio [Eq. (5.2.11)] versus mass number of parents Th, U, and

Pu for different cluster decays.

To identify the effective decay mode for even-even isotopes of Th, U, and Pu, we have

studied the branching ratios. The branching ratio (BR) of cluster decay with respect to

alpha emission is defined as

BR =
λcluster
λalpha

=
T alpha1/2

T cluster1/2

, (5.2.11)

where λalpha and λcluster are the decay constants of alpha emission and cluster decay,

respectively. The evaluated branching ratio of alpha emission with respect to cluster

decay as a function of the mass number of parent nuclei are given in Fig. 5.10. The

experimentally observed branching ratio relative to alpha-decay is≥ 10−19. From Fig. 5.10

the branching ratio results predict that 12C decay from 222Th, and 16O decay from 226U

are the compatible for measurement.

5.2.6 Geiger-Nuttall plot

In 1911 H. Geiger and J. Nuttal [240, 242] related the decay constant λ with the disin-

tegration energy (Q) of different decay modes. In Fig. 5.11 we present the Geiger-Nuttal

plots for half-lives (log10T1/2) versus
√
Q (Q in MeV) for the different clusters (8Be, 12C,

16O, 20Ne and 24Mg) emitted from the parents 218−234Th, 218−232U, and 224−238Pu iso-

topes. From Fig. 5.11 we can see that these plots reveal linear behavior in each case. The

Geiger-Nuttal law is written in the form:

log10T1/2 =
X√
Q

+ Y, (5.2.12)
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Figure 5.11: Geiger-Nuttall plots of log10T 1/2 (in s) versus Q−1/2 for 8Be, 12C, 16O, 20Ne,

and 24Mg decay from different parent nuclei.
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Figure 5.12: Geiger-Nuttall plots of log10T 1/2 (in s) versus -ln P for alpha-like clusters

from different parent nuclei.

where X represents the slopes and Y are the intercepts of the straight lines. We would

like to express that the G-N law is for ultimate Coulomb potential but our calculated

results show that the inclusion of surface potential will not produce an extreme deviation
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to the straight-line behavior. Each cluster decay has distinct slopes and intercepts. The

linear nature of these plots shows the validity of the ELDM model.

The Universal curve between logarithmic half-lives (log10T1/2) versus the negative loga-

rithm of penetrability (-ln P ) is in favor of the validity of the chosen ELDM model. The

plots for the emission of 8Be, 12C, 16O, 20Ne and 24Mg clusters from 218−228Th, 218−232U,
224−236Pu, 220−232U and 224−238Pu isotopes are shown in Fig. 5.12. Here, we found that

the plot is linear with the nearly same slope of X = 0.439 and intercept of Y = −23.651.

The inclusion of surface potential does not produce a significant variation to the linear

behavior of universal curves.

5.3 Conclusions

In summary, we have examined the bulk properties such as B.E./A and rms radii for

even-even Th, U, and Pu isotopes using RMF (NL3*) formalism. From the B.E./A

study of these isotopes, it is found that the 216Th, 218U, and 220Pu are the most stable

elements with N = 126. All values of charge radii increase with the neutron number N,

although a minor decrement occurs at N = 126, which can be correlated with the shape

transition. We have also calculated the two-neutron separation energies and differential

from two-neutron separation energies of these isotopes, which confirm (Figs. 5.4 and 5.5)

the possible major shell closure at N = 126 for these isotopes. In general, we can say that

the theoretically obtained results are largely in good agreement with the FRDM [235]

predictions and available experimental results [202].

Further, we have discussed the Q-values, alpha, and cluster decay half-lives for even-even
214−234Th, 216−232U, and 220−238Pu isotopes using the RMF model with NL3* parameter

set. The alpha and cluster decay half-lives of these nuclei have been calculated using the

ELDM model and various empirical formulas: UDL, VS, TM, Scaling Law by Horoi et al..

From Tables 5.1 and 5.2 it is observed that both theoretical and experimental Q-values

have a maximum for doubly magic daughter nuclei 208Pb (Zd= 82, Nd = 126) and magic

daughter nuclei 210Po, 212Rn, 214Ra, 216Th, 218U (Nd=126, which is a magic number) for

the chosen isotopes. The calculated Q-value reveals the shell effects at Nd = 126 and

influences the half-lives. The alpha decay half-lives are found to have a minimum value

for the decay leading magic daughter nuclei 214Ra, 216Th, 218U in these isotopes denoting

that the shell is stabilized. The cluster decay half-lives obtained for 8Be, 12C, 16O, 20Ne,

and 24Mg emissions from Th, U, and Pu isotopes indicate the shell is stabilized at the

daughters 208Pb, 210Po, 212Rn,214Ra, 216Th, and 218U, with the small half-lives. The alpha
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and cluster decay half-lives were compared with the corresponding ELDM values and with

the results of the empirical formula UDL, VS, Scaling Law by Horoi et al. and TM. It

is found that the ELDM results match nicely with the UDL results. It can be noticed

that the prediction ability of VS, TM, and Horoi formula is limited. It has been found

that the UDL formula, derived from the α like-R matrix theory, has better prediction

power giving comparable results with microscopic calculations. Also, the results obtained

in this work are in good agreement with experimental data. The penetrability (P ) for

a particular cluster decay will be maximum if the corresponding logarithmic half-life is

minimum. The Geiger-Nuttal plots clearly show a linear behavior with different slopes

and intercepts for different clusters decay from various parent nuclei. We conclude that

the RMF (NL3*) formalism provides the coherent study of microscopic observables for all

the considered isotopes.



Chapter 6

Study of Two-proton Emission

Half-lives
1

6.1 Introduction

An intriguing topic in nuclear research is to understand the exotic decay properties of

unstable nuclei, with the development of a new generation of radioactive ion beam facil-

ities and advanced detection technologies [254, 255, 256, 257, 258]. In recent years, the

proton radioactivity as one of the exotic decay modes has attracted several researchers

[256, 257, 258]. The two-proton (2p) radioactivity represents a simultaneous emission of

two protons from the mother nucleus near the 2p drip-line [259]. The two-proton radioac-

tivity phenomenon was first predicted in the 1960s by Zel’dovich [260] and Goldanskii

[261, 262]. In 1965, Janecke [263] tried to investigate the possible nuclei for two-proton

radioactivity and to find out their properties from the theoretical aspect. Galitsky and

Cheltsov [264] presented the first opinion of two-proton radioactivity. Goldanskii [261]

also gives the name of two-proton radioactivity. The spontaneous 2p radioactivity for

even-even nuclei has been attributed to pairing correlations and virtual excitations to

continuum state [257]. In this case, the one-proton decay process is energetically forbid-

den, whereas the two-proton decay is energetically allowed. The emission of two protons

is a process that occurs by the Coulomb and centrifugal barriers. Only those nuclei that

fulfill the condition for two-proton emission have a large Coulomb barrier. The Coulomb

barrier is not high enough for the very light parent nuclei. During the 2p decay process,

1The results discussed in this chapter have been published in Acta Phys. Pol. B, 53, 10-A3 (2022).

101
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the energy level of the 1p decaying channel is higher than that of 2p radioactivity. Two

proton emission, known as true 2p radioactivity, is characterized by Q2p > 0 and Qp < 0

(where Q2p and Qp represent the released energy of two-proton and one-proton radioac-

tivity, respectively) [256, 257, 258]. Another type called not true 2p radioactivity [265]

(Q2p > 0 and Qp > 0), has been observed from very short-lived nuclear ground states,

such as 6Be [266], 12O [267], and 16Ne [268]. Protons are basically charged particles and,

therefore, they are sensitive to the charge of other protons which construct a Coulomb

barrier. This Coulomb barrier interrupts protons from immediately leaving the atomic

nucleus even if they are unbound.

Several experimental studies have been carried out to identify possible nuclei of two-

proton emitters. The probability of the two-proton decay width of 12O and 16Ne was

introduced in 1978 by KeKelis et al. [268]. In 2002, the ground-state true two-proton

radioactivity has been observed for the first time from 45Fe→43 Cr + p+ p decay at the

Grand Accelerateur National d’Ions Lourds (GANIL)(France) [269] and Gesellschaft fur

Schwerionenforschung (GSI)(Germany) [259], respectively. The 2p decay process half-life

in 45Fe ranging between 3 ms and 8 ms was obtained by these research groups. The 2p

radioactivity of 54Zn was discovered at GANIL [270] in 2005 followed by the two-proton

radioactivity of 48Ni [271]. Mukha et al. studied the 2p decay of 19Mg by understanding

the decay products [272]. The decay of 19Mg, short-lived 2p ground-state emitter, was

studied at the Projectile-Fragment Separator (FRS) of GSI. A larger number of 19Mg →
17Ne + p + p events were observed. Recently, Goigoux et al. [273] observed two-proton

decay of 67Kr in an experiment with the BigRIPS separator.

From the theoretical perspective, several approaches have been used for the study of

the 2p radioactivity during the recent decades [274, 275, 276]. However, the description

can be classified mainly into two kinds. The first one is known as simplified theoreti-

cal approaches, which include the direct decay model [264, 277, 278], the diproton model

[279, 280, 281], and the simultaneous versus sequential decay model [282]. In the diproton

model, the two emitted protons are correlated hardily and constituted a He-like cluster,

including the effective liquid drop model (ELDM) [163, 164, 283], generalized liquid drop

model (GLDM) [284], CPPM [285], Gamow-like model [182, 286], etc. However, in the

three-body model [287, 288], the two protons and the nuclear core are distinct simulta-

neously, and the two protons are only suitable to the final correlation and decayed from

the parent nucleus.

One of the very successful models for calculating two-proton decay half-lives is the Ef-

fective Liquid Drop Model (ELDM), which was introduced by Goncalves and Duarte
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[228, 283] in 1993. In the ELDM model, the surface and Coulomb energies for the dinu-

clear appearance were investigated analytically, thus obtaining the Gamow’s barrier pen-

etrability factor for 2He emission. Furthermore, empirical formulas have been introduced

to find out 2p radioactivity by fitting the two-parameter and four-parameter which were

proposed by Liu et al. [182] and Sreeja et al. [183], respectively. Within these empirical

formulas, the experimental two-proton decay half-lives are reproduced with different ac-

curacies.

In our present study with the RMF model, we have investigated the binding energy per

nucleon (B.E./A) of Fe, Ni, Zn, Ge, Kr, and Zr isotopes with the NL3* parameter set.

Next, we obtain the S2p from the evaluated B.E. of these isotopes. We notice that the

theoretically obtained results agree well with the FRDM [235] and available experimental

results [203] for all the isotopes ranging from proton drip line to neutron drip line. Along

with this, the mass excess data (∆M) for 2p decay are calculated by using the obtained

B.E./A from the RMF [115, 111], FRDM [235] and WS4 [289] models. The calculated

mass excess results have been used further as input to find out a Q2p value and investi-

gate the two-proton decay half-lives by using an effective liquid drop model. Furthermore,

comparisons of our investigated results with the available experimentally predicted result

and with the results obtained using the empirical formula proposed by Sreeja et al. [183]

and Liu et al. [182] are also made. In addition, we predict the half-lives of possible nuclei

of the two-proton radioactivity in the range 30 ≤ Z ≤ 40 with the released energy Q2p > 0

and Qp < 0.2Q2p obtained by RMF (NL3*) model. Comparisons of our results with the

values obtained using the empirical formula of Sreeja and Liu are made too. Also, the

Geiger-Nuttall plots of [ ((Z0.8
d + l0.25) Q

−1/2
2p ) ] versus log10T1/2 for emission of 2He for

different isotopes of parent nuclei have been examined demonstrating their linear nature.

6.2 Results and discussions

The binding energy per nucleon (BE/A) is a fundamental and important nuclear property,

which is necessary for understanding the stability of nuclei and studying the decay lifetime.

In the present work, BE/A as a function of mass number (A) for selected isotopes of Fe, Ni,

Zn, Ge, Kr, and Zr to study 2p radioactivity is calculated by using RMF formalism with

NL3* parametrization. The results are shown in Fig. 6.1. To compare them qualitatively,

we have also presented the FRDM [235] and experimental data [203] in Fig. 6.1. As one

can see the results given in the panels of Fig. 6.1 are in excellent agreement with the

experimental results for all the isotopes ranging from proton drip line to neutron drip
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line, qualitatively as well as quantitatively.

Further, to check the reliability and accuracy of these results, we have calculated two-
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Figure 6.1: The total binding energy per nucleon for Fe, Ni, Zn, Ge, Kr, and Zr isotopes

obtained with RMF (NL3*) and compared with the FRDM [235] and Expt. [203] results

wherever available.

proton separation energy and compared it with the available experimental data. The

two-proton separation energy (S2p) is a considerable quantity in finding the structure and

their effects on the nuclei and especially for making a reliable prediction of the two-proton

emitters. In the present study, the S2p(N,Z) has been evaluated from the binding energy

(B.E.) and is given in the form:

S2p(Z,N) = B.E.(Z,N)−B.E.(Z − 2, N). (6.2.1)

The B.E. (Z, N) and B.E. (Z-2, N) are calculated by using the RMF formalism with NL3*

parameter. We would like to note that the results for S2p are in good agreement with

the FRDM predictions [235] as well as experimental [203] data. Also, we find that with

the increase of mass number A toward the drip-line, the S2p value gradually increases.
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It is seen from Fig. 6.2 that the 45Fe, 48Ni, 54Zn, 58Ge, 59Ge, 65Kr, 67Kr, 74Zr and 75Zr

nuclei which have been found as 2He emitters are placed beyond the proton drip line

with negative separation energies of -0.981 MeV -1.819 MeV, -1.187 MeV, -1.75 MeV,

-1.21 MeV, -3.21 MeV, -1.35 MeV, -2.071 MeV, and -0.975 MeV respectively. Such nuclei

satisfying the condition S2p < 0 may be the possible parent nuclei for simultaneous two-

photon emission.

The theoretically calculated binding energies per nucleon of the considered isotopes
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Figure 6.2: The two-proton separation energy for Fe, Ni, Zn, Ge, Kr, and Zr isotopes

obtained with RMF (NL3*) and compared with the FRDM [235] and Expt. [203] results

wherever available.

of parent nuclei in this work, using the RMF (NL3* parameter set) model, were used

to determine the Q2p-values, penetrability (P ), and two-proton radioactivity half-lives.

First, the mass excess data (∆M) have been investigated by using the B.E./A in RMF

(NL3*) formalism. The binding energy per nucleon is related to mass excess data in the

following way written as

Mass of the Nuclei = ((N*Mn +Z*Mp)*931.5 - A*B.E./A)/931.5 u

∆M = ( Mass of the Nuclei - Mass No. of Nuclei)*931.5 MeV

We use these calculated mass excess data to estimate the Q2p-values and two-proton decay

half-lives by the expression

Q2p = ∆MP − (∆M2p + ∆MD). (6.2.2)
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In Eq. (6.2.2) ∆MP notify the mass excess data for the parent nuclei in MeV and ∆M2p,

∆MD represents the mass excesses for the two-proton cluster and daughter nuclei, respec-

tively. The 2p-system or 2He is an unbound system whose mass excess value is equal to

twice the proton excess mass, i.e, ∆M2p = 2×∆MP = 2× 7.289 MeV = 14.578 MeV. The

Table 6.1: Comparison between the experimental data of the 2p radioactivity of 45Fe

isotope and the estimated ones by the ELDM, GLDM [284], CPPM [285], Gamow-like

[286], Skyrme parameter of SLy8 [290], Expt. [271], and two empirical formulas Sreeja

[183] and Liu [182].

log10T1/2 (s)

Decay case Qexpt.
2p (MeV) l ELDM GLDM CPPM Gamow-like SLy8 Expt. Sreeja Liu

[271] [284] [285] [286] [290] [271] [183] [182]

45Fe→ 43Cr 1.154 0 -2.43 -2.87 -2.71 -2.74 -2.88 -2.55 -1.80 -2.79

two-proton decay half-lives evaluated using ELDM are compared with the experimental

half-life and GLDM, CPPM, Gamow-like, and Skyrme parameter of SLy8 models for 2p

emitting from 45Fe, and are given in Table 6.1. We see that the evaluated ELDM half-life

is close to experimental data in comparison to the result of other models. Therefore, the

approach adopted in the present work (by calculating 2p decay half-lives using ELDM

with RMF inputs) explains well for two-proton radioactive nuclei.

We have tested the prediction power and accuracy of different theoretical approaches used

for two-proton decay half-lives studies. For this task, the theoretically predicted results

by the ELDM model has been compared with the results predicted by the empirical for-

mulas of Liu and Sreeja, respectively. Further, to test the impact of the difference in Q2p

result, we have also compared theoretically obtained half-lives using ELDM by three sets

of Q2p-values obtained from the RMF model, WS4, as well as from FRDM prediction.

The numerical results are listed in Table 6.2. A comparison with the experimental data

is also presented. From Table 6.2, it should be noticed that the differences between the

three kinds of Q2p results are large. It is observed from the table Table 6.2 that the exper-

imental Q2p of 45Fe, 48Ni, and 54Zn are reproduced better when using the RMF (NL3*)

model as compared to the FRDM and WS4 models. This is because small changes in a

force parameter of the NL3* and WS4, as well as FRDM, will affect the binding energy

per nucleon results. The predicted accuracy is given by the RMF (NL3*) model for 54Zn

is the highest.
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Then, the two-proton decay half-lives have been investigated using ELDM by inputting

the three types of Q2p values. Here, the angular momentum l is chosen to be zero. The cor-

responding decay half-lives are presented in columns 7th-11th of Table 6.2 together with

their experimental values. We also investigate the half-lives by using empirical formulas:

Liu and Sreeja by inputting RMF (NL3*) Q2p values. From the comparison between the

half-lives using ELDM (NL3*) and the half-lives calculated using Liu, and Sreeja formula,

it is found that the ELDM and Liu values are almost identical but the results obtained

with the Sreeja formula is slightly overestimated. As one can see from Table 6.2, the

calculated decay half-lives results are larger than the FRDM predictions and WS4 values.

Here, it is important to note that a very small difference in Q2p results causes drastically

change the two-proton decay half-lives.

To evaluate the predictive power and accuracy of our selected theoretical model, we

Table 6.2: The comparison of our theoretically calculated Q2p using NL3*, FRDM [235],

WS4 [289] model with the experimental data. log10T1/2 denotes the corresponding two-

proton radioactivity half-lives within the ELDM by inputting the NL3*, FRDM, and WS4

model Q2p values. The two-proton radioactivity half-lives also calculated using empirical

formulas Liu [182] and Sreeja [183] by inputting Q2p (NL3*) value.

Nuclei Q2p (MeV) Penetrability log10T
cal.
1/2 (s) log10T

expt.
1/2 (s)

NL3* FRDM WS4 Expt. P NL3* Liu Sreeja FRDM WS4

45Fe 1.63 1.89 2.06 1.210 [275] 2.395× 10−16 -6.90 -6.61 -5.46 -8.59 -9.43 -2.42 [275]

1.100 [259] -2.40 [259]

1.140 [269] -2.07 [269]

1.154 [271] -2.55 [271]

48Ni 1.85 3.30 2.54 1.350 [271] 2.237× 10−16 -6.87 -6.59 -5.44 -12.64 -10.24 -2.08 [271]

1.290 [291] -2.52 [291]

1.310 [292] -2.52 [292]

54Zn 1.18 2.77 1.98 1.280 [293] 7.140× 10−23 0.63 0.07 0.93 -10.01 -6.30 -2.76 [293]

1.480 [270] -2.43 [270]

67Kr 1.25 1.33 3.06 1.690 [273] 1.708× 10−27 4.89 3.69 4.40 3.78 -7.89 -1.70 [273]

have estimated the standard deviation of two-proton decay half-life (log10T
2p
1/2) predicted

results with the RMF (NL3*) formalism and have compared it with the investigated stan-

dard deviation of half-lives result of the Liu and Sreeja formula. The standard deviation
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expression reads

σ =

[
1

n

n∑
i=1

[log(T exp1/2 )− log(T cal1/2)]2

]1/2

. (6.2.3)

In the case of experimental data, we obtained that the standard deviation of the log10T
2p
1/2

is 4.98 for the RMF (NL3*), 7.61 for the FRDM, and 6.45 for the WS4. It is clearly

seen that the σ = 4.98 for RMF (NL3*) has better predictive ability than FRDM, and

WS4 models. In the case of RMF(NL3*), we obtained that the standard deviation of the

log10T
2p
1/2 is 0.693 for Liu and 1.06 for Sreeja, respectively.

Given the good agreement between the theoretically predicted outcomes with the ELDM

using NL3* Q2p values and the available experimental value, we use this theoretical ELDM

(NL3*) approach to find out the decay half-lives of possible two-proton radioactive nuclei

in the region of 30 ≤ Z ≤ 40. An energy criterion was introduced by Olsen et al. [294],

which reads Q2p > 0 and Qp < 0.2Q2p, extracted from the NL3* model. In this work, an

extended criterion is used on two-proton decay half-lives, −12 ≤ log10T
2p
1/2 ≤ 2s [295]. The

Table 6.3: The comparison of calculated two-proton decay half-lives us-

ing ELDM, and two empirical formulas Liu [182] and Sreeja [183] by

inputting the Q2p (NL3*) values.

Nuclei Q2p (MeV) l Penetrability log10T1/2 (s)

NL3* p ELDM Liu Sreeja

58
32Ge 1.75 0 4.006× 10−20 -3.12 -3.50 -2.48

59
32Ge 1.55 0 3.645× 10−21 -2.08 -2.04 -1.07

63
34Se 2.10 0 8.220× 10−19 -4.43 -4.39 -3.35

65
36Kr 3.09 0 3.025× 10−15 -8.01 -7.42 -6.24

70
38Sr 2.43 0 3.213× 10−19 -4.02 -3.92 -2.89

74
40Zr 3.74 0 8.570× 10−15 -8.45 -7.54 -6.36

75
40Zr 2.19 0 4.538× 10−22 -1.18 -1.63 -0.68

predicted half-lives are presented in Table 6.3. The first column contains the parent nuclei.

The calculated Q2p-value using the RMF is listed in column 2. The angular momentum

and penetrability for 2He decay are given in columns 3-4. For quantitative comparisons

between the calculated two-proton decay half-lives using the ELDM, and empirical formula

Liu, Sreeja results are listed in columns 5-7. The two-proton radioactivity can not be
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observed by the NL3* for the Z = 30 nuclides. Presently, a small number of experimentally

discovered two-proton emitters are known, more discoveries on two-proton emitters are

expected with the new generation of radioactive ion beam facilities. In addition, it can

be seen from Table 6.3 that the light parent nuclei get shorter log10T
2p
1/2 half-lives and

the decay half-lives become higher for the heavy parent nuclei. For light nuclei, the

Coulomb barrier among the daughter nucleus and two proton system is low. This is due

to the smaller charge number so that more easily two protons can penetrate the Coulomb

barrier. However, the Coulomb barrier becomes longer and longer with the increase of

Z. As a result, the two proton decay half-life gets higher in the case of the heavy parent

nuclei.
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Figure 6.3: Geiger-Nuttall plots for log10T 1/2(s) versus [(Z0.8
d + l0.25)Q

−1/2
2p ] for two-proton

emitters from different parent nuclei.

In 1911 Geiger and Nuttal [240, 242] experimentally observed a standard relation

between decay constant λ and the disintegration energy Q of several decay modes. The

Geiger-Nuttal expression is written as

log10T1/2 =
X√
Q

+ Y, (6.2.4)

Here, X and Y represent the slope and intercept of the straight line, respectively. Recently,

based on the Geiger and Nuttal law, we put forward a two-parameter empirical formula

for two-proton decay half-lives by considering the contribution of the daughter atomic
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number (Zd) and angular momentum (l) on T 2p
1/2. It can be expressed as

log10T1/2 = 2.032(Z0.8
d + lb)Q

−1/2
2p − 26.832. (6.2.5)

To investigate the validity of the chosen ELDM approach, we have plotted the relation

between the quantity log10T1/2 versus [(Z0.8
d + l0.25)Q

−1/2
2p ]. It is displayed in Fig. 6.3 for

2He decay from different parent nuclei. Here, all the plots are found to have linear nature,

which indicates that our theoretically predicted results are reliable. We hope our present

predictions of 2He decay of these isotopes could serve as a good basis in future theoretical

as well as experimental investigations.

6.3 Conclusions

In summary, we have analyzed the B.E./A for Fe, Ni, Zn, Ge, Kr, and Zr isotopes using

RMF (NL3*) formalism. There is an excellent agreement of B.E./A of our calculated

RMF results with the FRDM prediction as well as experimental results for all the isotopes

ranging from proton drip line to neutron drip line, qualitatively as well as quantitatively.

The results obtained for the two-proton separation energies of these isotopes by the RMF

(NL3*) are in good agreement with FRDM data, as well as with the experimental data.

Further, we have tested the prediction power and accuracy of different theoretical

approaches used for two-proton decay half-lives investigation. The Q2p-values of 45Fe,
48Ni, 54Zn, and 67Kr have been obtained from the RMF model, WS4, as well as from

FRDM data. We found that the difference between the three kinds of Q2p values are

large. The experimental Q2p of 45Fe, 48Ni, and 54Zn are reproduced better by the results

with the RMF (NL3*) model as compared to the FRDM and WS4 models. The accuracy

of theoretical predictions depends highly on the reliability of these inputs, and hence the

uncertainties of the investigated two-proton decay half-lives are rather large due to the

Q2p uncertainties. The investigated half-lives using the ELDM (NL3*) and Liu values

are almost identical, but the results found by the Sreeja formula are slightly lower. In

addition, we predict the half-lives of possible two-proton radioactive candidates in the

region of 30 ≤ Z ≤ 40. It may be provided a theoretical reference for future experiments.
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Summary and Conclusions

In the thesis, we have studied the nuclear reaction dynamics for light and medium

mass nuclei and decay modes of various parent nuclei using the Relativistic mean-field

model. We have used the well-known Glauber model for calculating the total reaction

cross section (σr) and differential elastic scattering cross section ( dσ
dΩ

). The nuclear density

distributions of the projectile and the target nuclei required for the calculation of reaction

cross-sections are obtained from the RHB model. For the study of alpha decay, cluster de-

cay, and proton radioactivity of various potential radioactive nuclides by using the ELDM

model. In the study of these different decay modes, the consideration of the nuclear shell

closure and nuclear structure is an important aspect. In our studies, we have found that

the alpha and cluster decay modes which are leading to the formation of daughter nuclei

with neutron or proton numbers equal to magic numbers were having minimum half-lives.

It clearly demonstrates the prominent role of the shell effect in cluster radioactivity.

In Chapter 1, we have presented a brief introduction of the subject along with the rel-

evant work done by other researchers on the subject. The nuclear landscape along with

other basic relevant terms for the study undertaken has been introduced in this chapter.

A brief overview of the earlier theoretical and experimental study of cluster radioactivity

in both trans-tin and trans-lead regions is provided. Motivation to take up present work

has also been introduced.

In Chapter 2, we have given the details of the theoretical formalisms used in this thesis.

We have presented the relativistic mean field (RMF) formalism with NL3* parameter, and

the Relativistic Hartree Bogoliubov formalism with density-dependent meson exchange

(DD-ME2), density-dependent point coupling (DD-PC1) in detail. The BCS pairing cor-

111
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relation for open-shell nuclei is included in this chapter. The details of the Glauber model,

its description for investigating nuclear reaction cross-section, and the process of using

the nuclear densities from this RMF formalism have been described. A detail of the effec-

tive liquid drop (ELDM) model is discussed in this chapter. The empirical formulas such

as Universal Decay Law (UDL), Tavares-Medeiros (TM), Viola-Seaborg (VS), and Horoi

formula, have been given for the sake of completeness in the discussion. The two-proton

radioactivity half-lives are computed using the empirical formula Liu and Sreeja which is

also discussed in this chapter.

In Chapter 3, we studied the binding energy and charge radius for light mass nuclei

in the framework of RHB formalism with DD-ME2 and DD-PC1 parameter sets. The

theoretically calculated results are found to be in good agreement with the available ex-

perimental data. In general, the comparative analysis of the total reaction cross section

σr using DD-ME2 and DD-PC1 densities shows the superiority of DD-ME2 over DD-PC1.

We have found that the calculated values of σr are in good agreement with the experimen-

tal data. It has been also found that the total reaction cross-section increases with the

increase of the projectile mass. A study of the differential scattering cross-section with

DD-ME2 and DD-PC1 densities shows that both calculated results are quite comparable

to each other. However, at the higher angle region, the cross-sections deviate slightly from

the experimental data, but the nature of the curve is similar. The oscillatory structure

of the elastic scattering differential cross-section at a low scattering angle increases with

the increase of incident projectile energy. Hence, employing reliable density distribution

in conjunction with the Glauber model leads to a satisfactory description of the total

reaction cross-section and elastic scattering differential cross-section over a wide energy

range.

In Chapter 4, we have discussed the Q values and cluster decay half-lives for even-even

CR nuclei in the trans-tin and transition metal region using the relativistic mean-field

(RMF) model with NL3* parameter set. The Effective Liquid Drop Model of cluster de-

cay has been used to calculate cluster decay half-lives. The half-lives are also computed

using empirical formulas: UDL and Scaling Law by Horoi et al. The calculated Q value

has a maximum for doubly magic daughter nuclei 100Sn are its neighboring nuclei in the

trans-tin region and transition metal nuclei, the Q value has a maximum for neutron

number of daughter nuclei Nd = 82. The calculated Q value indicates the shell effects at

Nd = 50, 82 and influences the half-lives. In the trans-tin region, the minima of the cluster

decay half-lives are found for the decay which leads to doubly magic daughter nuclei 100Sn

or near doubly magic daughter nuclei. The minimum value of the cluster decay half-lives



113

are found for the decay leading to magic daughter nuclei 150Er, 152Yb, 154Hf, respectively,

in the transition metal region. The half-lives of cluster decay calculated with ELDM in

conjunction with RMF are close to the results obtained with the UDL formula. Also,

ELDM results are in good agreement with experimental data as compared to the GLDM

results [50]. Therefore, the ELDM in conjunction with relativistic model inputs is well

suited for explaining CR from trans-tin and transition metal regions. Low Q values of

the non-alpha-like cluster emissions lead to larger half-lives. The Geiger-Nuttal plots for

various clusters decay from different parent nuclei show a linear behavior with different

slopes and intercepts.

In Chapter 5, we have calculated the binding energy per nucleon (B.E./A), rms radii,

two-neutron separation energies, and differential from two-neutron separation energies

for even-even Th, U, and Pu isotopes using RMF (NL3*) formalism. From the B.E./A

analysis of these isotopes, it is found that the 216Th, 218U, and 220Pu are the most stable

elements. The two-neutron separation energies and differential from two-neutron sepa-

ration energies, show a sharp dip at N = 126, clearly showing major shell closure at

N = 126. The theoretically obtained results by RMF (NL3*) are in good agreement with

the FRDM predictions and available experimental results. Further, we have estimated

the Q-values, alpha, and cluster decay half-lives for even-even 214−234Th, 216−232U, and
220−238Pu isotopes. The theoretical and experimental Q-values have a maximum for dou-

bly magic daughter nuclei 208Pb and its neighboring nuclei for the chosen isotopes. The

calculated Q-value reveals the shell effects at Nd = 126 and influences the half-lives. The

alpha decay half-lives are found to have a minimum value for the decay leading magic

daughter nuclei 214Ra, 216Th, 218U in these isotopes denote that the shell is stabilized.

The cluster decay half-lives indicate the shell is stabilized at the daughters 208Pb, 210Po,
212Rn, 214Ra, 216Th and 218U, with the minimum half-lives. The results obtained by

ELDM match nicely with the UDL results. Also, the results obtained in this work are in

good agreement with experimental data. The Geiger-Nuttal plots clearly show a linear

behavior with different slopes and intercepts for different clusters decay from various par-

ent nuclei. We conclude that the RMF (NL3*) formalism provides the coherent study of

microscopic observables for all the considered isotopes.

In Chapter 6, we have employed RMF (NL3*) formalism to calculate the B.E./A for Fe,

Ni, Zn, Ge, Kr, and Zr isotopes for studying proton radioactivity. The calculated RMF

results of B.E./A are found to be in excellent agreement with the experimental results as

well as with FRDM predictions (where expt. data is not available) for all the isotopes

ranging from proton drip line to neutron drip line, qualitatively as well as quantitatively.
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The two-proton separation energies (S2n) derived from the calculated B.E./A of these

isotopes clearly show the evolution of shell structure near magic numbers.

Further, we have tested the prediction power and accuracy of different theoretical

approaches used for the two-proton decay half-lives investigation. The Q2p-values of 45Fe,
48Ni, 54Zn, and 67Kr have been obtained from the RMF model, WS4, as well as from

FRDM data. From the analysis, we found that the difference between the three kinds of

Q2p values are quite large. The experimental Q2p of 45Fe, 48Ni, and 54Zn are reproduced

better by the results with RMF (NL3*) model as compared to the FRDM and WS4

models. The accuracy of theoretical predictions depends highly on the reliability of these

inputs, and hence the uncertainties of the investigated two-proton decay half-lives are

rather large due to the Q2p uncertainties. The half-lives results obtained using ELDM

(NL3*) were compared with the values of the Liu and Sreeja formula and it is found that

Liu values are almost identical, but the results obtained by the Sreeja formula are slightly

less. In addition, we predict the half-lives of possible two-proton radioactive candidates

in the region of 30 ≤ Z ≤ 40. The calculated results can be taken as a prediction and

theoretical reference for future experiments.

7.1 Future scope of the present work

In the present work, We have theoretically investigated the nuclear reaction dynamics of

light and medium mass nuclei and nuclear decay modes using the Relativistic mean-field

(RMF) model. We find that the RMF model provides a very successful tool to study the

interesting nuclear properties across the nuclear landscape and for the nuclei lying near as

well as far from the stability line. As a future extension to the present work, the following

research objectives may be of much interest:

(i) The effect of deformation on the reaction dynamics calculation is of great interest.

(ii) To extend the reaction dynamics study through relativistic mean field formalism to

the medium, heavy and super-heavy nuclei.

(iii) The deformed density of the relativistic mean field formalism be used directly in the

calculations instead of converting it to its spherical equivalent.

(iv) The role of deformations of the parent, daughter, and emitted cluster on the half-life

time of various parent nuclei both in trans-tin and trans-lead regions.

(v) Search of possible doubly magic nuclei heavier than 208Pb nucleus in the superheavy

region using the RMF model.

(vi) The role of neutron and proton magicity, and shell effects by studying the cluster
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decay half-lives of different parent nuclei.

(vii) The study of the possibility of emission of heavy clusters from various parent nuclei

both in the trans-tin and trans-lead regions.

(viii) To study and search for the new experimentally potential two-proton radioactivity

candidates.

Overall continued experimental and theoretical efforts for the exotic nuclei are strongly

encouraged to explore and develop our standing about the nuclear structure physics.
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